

R.M.D. ENGINEERING COLLEGE (An Autonomous Institution)

REGULATIONS 2022

B.Tech. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

அறிவே

CURRICULUM & SYLLABI (For the students admitted during 2023-2024)

ஆக்கம்

R.M.D. ENGINEERING COLLEGE (An Autonomous Institution) REGULATIONS 2022 CHOICE BASED CREDIT SYSTEM

B.Tech. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

I. PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates can

- **PEOI:** Work effectively in inter-disciplinary field with the knowledge of Artificial Intelligence and Machine Learning to develop appropriate solutions to real-world problems.
- **PEO2:** Apply their knowledge to the technological revolution through life-long learning.
- **PEO3:** Excel as socially committed engineers or entrepreneurs with high ethical and moral values.
- **PEO4:** Pursue advanced studies and engage in innovative research in the field of Artificial Intelligence and Machine Learning.

II. PROGRAM OUTCOMES (POs)

- 1 **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2 **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles ofmathematics, natural sciences, and engineering sciences.
- 3 **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4 **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5 **Modern tool usage**: Create, select, and apply appropriate techniques, resources, andmodern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6 **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 7 **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and needfor sustainable development.
- 8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11 **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12 **Life-long learning**: Recognize the need for, and have the preparation and ability toengage in independent and life-long learning in the broadest context of technological change.

III. PROGRAM SPECIFIC OUTCOMES (PSOs)

The Students will be able to

PSO1: Apply fundamental concepts of Artificial Intelligence and Data Science to solve technical

problems.

PSO2: Utilize Artificial Intelligence and Data Science tools to provide innovative business solutions.

PSO3: Implement the domain knowledge to achieve successful career as an employee, entrepreneur

and an engineering professional.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES(PEOs) WITH PROGRAMME OUTCOMES(POs)

A broad relation between the programme objective and the outcomes is given in thefollowing table

PROGRAMME EDUCATIONAL		E			PR	OGR	AMN	ЛЕО	UTC	OME	S	
OBJECTIVES	1	2	3	4	5	6	7	8	9	10	11	12
I AMO	3	3	3	3	2	2	2	1	1	1	1	1
	3	3	3	3	2	1	1	1	3	3	1	3
III	2	2	2	2	2	3	2	3	3	1	1	1
IV	3	3	3	3	2	2	2	3	3	3	2	1

MAPPING OF PROGRAM SPECIFIC OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the Program Specific Objectives and the outcomes is given in the following table

PROGRAMME SPECIFIC					PR	OGR	AMN	AE O	UTC	OME	S	
OBJECTIVES	1	2	3	4	5	6	7	8	9	10	11	12
Ι	3	3	3	3	3	3	2	1	1	1	1	2
II	3	3	3	3	3	3	2	1	1	1	1	2
III	2	2	2	2	3	2	2	2	3	2	3	3

Contribution

R.M.D. ENGINEERING COLLEGE (An Autonomous Institution) REGULATIONS 2022

B.Tech. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII (For the students admitted during 2023-2024)

Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEC	DRY COURS	SES WITH LABORATORY	COMPONE	NT				
1	22MA101	Matrices and Calculus	BSC	5	3	0	2	4
2	22CH101	Engineering Chemistry	BSC	5	3	0	2	4
3	22CS101	Problem Solving using C++	ESC	5	3	0	2	4
4	22CS102	Software Development Practices	ESC	5	3	0	2	4
5	22EC101	Digital Principles and System Design	ESC	5	3	0	2	4
THEC	DRY COURS	SES						
6	22GE101	Heritage of Tamils	HSMC	1	1	0	0	1
LABC	ORATORY (COURSES WITH THEORY	COMPONE	NT				
7	22GE111	Computer Aided Engineering Graphics	ESC	163	1	0	2	2
LABC	DRATORY (COURSES						
8	22GE112	Product Development Lab-I	EEC	2	0	0	2	1
MANI	DATORY C	OURSES		-				
9	22MC101	Induction Program (Non Credit)	MC		3 We	eks		
	1	TOTAL		31	17	0	14	24

SEMESTER I

SEMESTER II

Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С					
THEC	ORY COURS	SES											
1	22GE201	Tamils and Technology	HSMC	1	1	0	0	1					
тнес	ORY COURS	SES WITH LABORATORY	COMPONE	NT									
2 22MA201 Transforms and Numerical Methods BSC 5 3 0 2 4													
3	22CS201	Data Structures	ESC	5	3	0	2	4					
4	3	0	2	4									
5	22HS101	Professional Communication	HSMC	4	2	0	2	3					
6	22CS202	Java Programming	ESC	5	3	0	2	4					
7	22IT201	Database Management System	PCC	5	3	0	2	4					
LABC	ORATORY C	COURSES											
8	22GE211	Product Development Lab – II	EEC	2	0	0	2	1					
MANI	DATORY CO	OURSES											
9	22CH102	Environmental Sciences and Sustainability (Non Credit)	MC	562	2	0	0	0					
AUDI	AUDIT COURSES												
10	22AC201	Yoga for Stress Management	AC	1	1	0	0	0					
		TOTAL		35	21	0	14	25					

SEMESTER III

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THE	EORY COUR	SES	1 1					
1.	22MA301	Discrete Mathematics	BSC	4	3	1	0	4
2.	22GE301	Universal Human Values II: Understanding Harmony	HSMC	3	3	0	0	3
THEORY	Y COURSES	WITH LABORATOR	Y COMPO	NENT				
3.	22AM301	Artificial Intelligence	PCC	5	3	0	2	4
4.	22CS304	Operating Systems	PCC	4	2	0	2	3
5.	22CS307	Advanced Java Programming	PCC	5	3	0	2	4
6.	22CS306	Design and Analysis of Algorithms	PCC	5	3	0	2	4
LABORA	ATORY COU	JRSES	-X					
7.	22GE311	Product Development Lab-III	EEC	2	0	0	2	1
EMPLO	YABILITY F	ENHANCEMENT COU	JRSES					
8.	22CS311	Aptitude and Coding Skills- I	EEC	2	0	0	2	1
9.	22AM311	Internship	EEC	2	0	0	2	1
AUDIT (COURSES							
10.	22AC301	Value Education (Non Credit)	AC	1	1	0	0	0
		TOTAL		33	18	1	14	25
		S MIGOL		Har				

*2 weeks for one credit. Internship during 2 Semester Summer Vacation

SEMESTER IV

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEOI	RY COURSES			I				
1.	22CS302	Computer Organization and Architecture	ESC	3	3	0	0	3
2.		Professional Elective- I	PEC	4	2	0	2	3
THEO	RY COURSES W	ITH LABORATORY COM	IPONENT		I			
3.	22MA401	Probability and Statistics	BSC	5	3	0	2	4
4.	22AM401	Neural Networks	PCC	4	2	0	2	3
5.	22AM402	Machine Learning Essentials	PCC	4	2	0	2	3
6.	22IT403	Web Development Frameworks	PCC	5	3	0	2	4
LABOH	RATORY COURS	ES						
7.	22GE411	Product Development Lab-IV	EEC	2	0	0	2	1
EMPLO	DYABILITY ENH	IANCEMENT COURSES						
8.	22CS411	Aptitude and Coding Skills - II	EEC	2	0	0	2	1
AUDIT	COURSES	E F						
9.	22AC401	Yoga/Personality Development(Non-Credit)	AC	1	1	0	0	0
		TOTAL		30	16	0	14	22
		அறிவே	9JB	BID				

	SEMESTER V											
S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С				
THEOF	RY COURS	ES										
1.		Open Elective- I	OEC	3	3	0	0	3				
2.		Professional Elective -II	PEC	3	3	0	0	3				
3.		Professional Elective-III	PEC	3	3	0	0	3				
THEOF	RY COURS	ES WITH LABORATORY COMPON	NENT									
4.	22AM501	Deep Learning	PCC	5	3	0	2	4				
5.	22AM502	Data Exploration, Feature Engineering and Visualization	PCC	4	2	0	2	3				
EMPLO	YABILIT	Y ENHANCEMENT COURSES										
6.	22CS511	Advanced Aptitude and Coding Skills- I	EEC	2	0	0	2	1				
7.	22AM511	Internship and Career Readiness Course	EEC	2	0	0	2	1				
MANDA	ATORY CO	DURSES	julltüt									
8.	22MC501	Indian Constitution (Non Credit)	MC	1	1	0	0	0				
		TOTAL		23	15	0	8	18				

SEMESTER VI

		JENIE JEK	X					
S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
THEOR	RY COURS	ES	A					
1.	22AM601	Automata Theory and Compiler Design	PCC	3	3	0	0	3
2.		Open Elective - II	OEC	3	3	0	0	3
3.		Professional Elective- IV	PEC	3	3	0	0	3
4.		Professional Elective -V	PEC	3	3	0	0	3
THEOI	RY COURS	ES WITH LABORATORY COMPO	NENT					
5.	22AM602	Foundation of Reinforcement Learning and Ensemble Methods	^{ng} PCC	5	3	0	2	4
6.	22CS602	Object Oriented Software Engineering	PCC	4	2	0	2	3
EMPLO	OYABILIT	Y ENHANCEMENT COURSES						
7.	22CS611	Advanced Aptitude and Coding Skills - II	EEC	2	0	0	2	1
8.	22AM611	Mini Project	EEC	2	0	0	2	1
		TOTAL		25	17	0	8	21

	SEMESTER VII											
S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С				
THEOI	RY COURS	ES										
1.	22AM702	Computer Vision	PCC	3	3	0	0	3				
2.		Professional Ethics	HSMC	3	3	0	0	3				
3.		Open Elective -III	OEC	3	3	0	0	3				
4.		Open Elective -IV	OEC	3	3	0	0	3				
5.		Professional Elective -VI	PEC	3	3	0	0	3				
THEOI	RY COURS	ES WITH LABORATORY COMPO	NENT									
6.	22AM701	Natural Language Processing	PCC	5	3	0	2	4				
LABOI	RATORY C	OURSE										
7.	22AM711	MLOps ENGINEEDING	PCC	2	0	0	2	1				
MAND	ATORY CO	DURSES	ULLEQE									
8.	22MC711	Essence of Indian Knowledge Tradition (Non Credit)	МС	1	1	0	0	0				
	TOTAL 23 19 0 64											

SEMESTED VII

SEMESTER VIII

		SEMESTER	R VIII					
S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
EMPLO	OYABILIT	Y ENHANCEMENT COURSES						
1.	22AM811	Project Work	EEC	16	0	0	16	8
		TOTAL		16	0	0	16	8
		அறிவே	ஆக்	TOTAL N	0. OF	F CRI	EDITS	5: 16

				Cr	edits Po	er Seme	ester				
S. No.	Subject Area	Ι	II	III	IV	v	VI	VII	VIII	Credit Total	Percentage
1	HSMC	-	4	4	-	-	-	3	-	11	6.75%
2	BSC	8	8	4	4	-	-	-	-	24	14.72%
3	ESC	14	8	3	-	-	-	-	-	25	15.34%
4	PCC	-	4	10	14	8	11	9	-	56	33.13%
5	PEC	-	-	-	3	6	6	3	-	18	11.04%
8	OEC	-	-	-	-	3	3	6	-	12	7.36%
7	EEC	1	1	3	3	2	2	-	8	20	11.66%
8	MC			\checkmark	\checkmark	\checkmark		\checkmark			
	Total	23	25	24	24	18	21	20	8	163	

CREDIT SUMMARY

HSMC – Humanities and Social Sciences including Management courses; BSC – Basic Science Courses; ESC – Engineering
 Science Courses including workshop, drawing, basics of electrical/mechanical/computer etc.; PCC – Professional Core Courses;
 PEC – Professional Elective Courses relevant to chosen specialization/branch; OEC – Open Subjects–Electives from other technical and/or emerging subjects EEC – Project Work, Seminar and Internship in Industry or elsewhere

PROFESSIONAL ELECTIVES:

		PROFESSIONAL ELI	ECTIVES					
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		DATA SCIENCE AND A	NALYTICS			_	_	
1.	22AM901	Data Science using Python	PEC	4	2	0	2	3
2.	22AM902	Data Analytics	PEC	4	2	0	2	3
3.	22AM903	Social Network Analytics	PEC	3	3	0	0	3
4.	22AM904	Text and Speech Analytics	PEC	3	3	0	0	3
5.	22AM905	Image and Video Analytics	PEC	3	3	0	0	3
6.	22AM906	Stream Processing and Analytics	PEC	3	3	0	0	3
		APPLIED AI						
7.	22AM907	AI in Block Chain	PEC	3	3	0	0	3
8.	22AM908	Augmented and Virtual Reality	PEC	4	2	0	2	3
9.	22AM909	Intelligent Robots	PEC	3	3	0	0	3
10.	22AM910	Generative AI	PEC	3	3	0	0	3
11.	22CS925	Game Development	PEC	3	3	0	0	3
12.	22CS921	Industrial IoT	PEC	3	3	0	0	3
		AI AND CLOU	D					
13.	22CS907	Cloud Foundations	PEC	4	2	0	2	3
14.	22CS909	Virtualization	PEC	3	3	0	0	3
15.	22CS910	DevOps	PEC	3	3	0	0	3
16.	22CS911	Data Engineering in Cloud	PEC	3	3	0	0	3
17.	22CS933	Machine Learning for NLP in Cloud	PEC	3	3	0	0	3
18.	22CS934	Cloud Services Management	PEC	3	3	0	0	3
		HIGH PERFORMANCE O	COMPUTING	r				
19.	22AM911	Multi-Core Architecture and	PEC	3	3	0	0	3

		Programming						
20.	22AM912	GPU Computing	PEC	3	3	0	0	3
21.	22EC601	Digital Signal Processing	PEC	3	3	0	0	3
22.	22CS924	Quantum Computing	PEC	3	3	0	0	3
23.	22AM913	Scalable Machine Learning	PEC	3	3	0	0	3
24.	22AM914	Optimization Methods in Machine	PEC	3	3	0	0	3
		Learning	I LC	5	5	0	0	5

HONOURS VERTICALS:

	INTELLIGENT HEALTHCARE									
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С		
1.	22AM915	AI and ML for Healthcare	PEC	4	2	0	2	3		
2.	22AM916	Medical Image Analysis	PEC	3	3	0	0	3		
3.	22AM917	Clinical Data Science	PEC	3	3	0	0	3		
4.	22AM918	Deep Learning in Genomics and Life Sciences	PEC	3	3	0	0	3		
5.	22AM919	Bio-Informatics	PEC	3	3	0	0	3		
6.	22AM920	Smart and Interactive Healthcare Technologies	PEC	3	3	0	0	3		
7.	22AM812	Capstone Project	PEC	12	0	0	12	6		

COMPUTATIONAL INTELLIGENCE									
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	
1.	22AM921	Soft Computing	PEC	3	3	0	0	3	
2.	22AM922	Applied AI and ML	PEC	3	3	0	0	3	
3.	22AM923	Recommender Systems	PEC	3	3	0	0	3	
4.	22AM924	Knowledge Engineering	PEC	3	3	0	0	3	
5.	22AM925	Computational Neuroscience	PEC	3	3	0	0	3	
6.	22AM926	AI Essentials	PEC	3	3	0	0	3	
7.	22AM812	Capstone Project	PEC	12	0	0	12	6	

	OPEN ELECTIVES – OFFERED TO OTHER DEPARTMENTS										
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С			
1.	22AM907	AI in Block Chain	OEC	3	3	0	0	3			
2.	22AM921	Soft Computing	OEC	3	3	0	0	3			
3.	22AM925	Computational Neuroscience	OEC	3	3	0	0	3			
4.	22AM919	Bio-Informatics	OEC	3	3	0	0	3			
5.	22AM001	Introduction to Generative AI	OEC	3	3	0	0	3			
6.	22AM002	Foundations of Natural Language Processing	OEC	3	3	0	0	3			
7.	22AM003	Cognitive Science and Analytics	OEC	3	3	0	0	3			

R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING WITH SPECIALIZATION IN

SI. No	NAME OF THE HONOURS DEGREE WITH SPECIALIZATION
1.	Computational Intelligence
2.	Intelligent Healthcare

R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Additional 18 credits to be completed from the courses offered in any Professional Elective Vertical

R2022

B.TECH. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING WITH MINOR DEGREE

SI. No	NAME OF THE MINOR DEGREE	OFFERRING DEPARTMENT
1.	Internet of Things	Electronics and Communication Engineering
2.	Advanced Web Development	Computer Science and Business Systems
3.	Fintech and Blockchain	Computer Science and Business Systems

R2022

MINOR DEGREE CURRICULUM OFFERED BY DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (for other B.E. / B.Tech. Programmes) MINOR DEGREE IN ARTIFICIAL INTELLIGENCE

SI. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	С
1.	22AM004	Introduction to Data Science	3	3	0	0	3
2.	22AM005	Introduction to Artificial Intelligence	3	3	0	0	3
3.	22AM006	Machine Learning Algorithms	3	3	0	0	3
4.	22AM007	Foundations of Deep Learning	H 3	3	0	0	3
5.	22AM812	Capstone Project	12	0	0	6	6

SYLLABUS

SEMESTER –I

ExplaDeterriIllustriElabori	(Common to All Branches) ES: will enable learners to: in the concepts of matrix algebra techniques needed for practical app mine the curvature of the curves.	3	0	2	4
The Course Expla Detern Illustr Elabo	will enable learners to: in the concepts of matrix algebra techniques needed for practical app				
ExplaDeterriIllustriElabori	in the concepts of matrix algebra techniques needed for practical app				
DeternIllustrElabo					
IllustrElabo	mine the curvature of the curves	olica	tior	ıs.	
• Elabo	the curvature of the curves.				
	ate the simple applications of multivariable calculus and vector calcu	ulus	•		
UNIT I	rate the concept and application of multiple integrals.				
	MATRICES				15
Statement an orthogonal tr	and Eigenvectors of a real matrix – Properties of Eigenvalues and ad applications of Cayley-Hamilton Theorem – Diagonalization cansformation – Reduction of a quadratic form to canonical form $n - N$ ature of quadratic forms.	ofr	natr ort	rices hogo	by by
Experimen	ts using SCILAB:		Th	eory	ı:9
1. Introd	luction to SCILAB through matrices and general syntax.				
	ng the Eigenvalues and Eigenvectors.				
3. Plotti	ng the graph of a quadratic form.				
		La	ıbor	ator	y: 6
UNIT II	SINGLE VARIABLE CALCULUS				15
curvature-Ev	Cartesian and Polar Co-ordinates – Centre and radius of curvatu olutes. ts using SCILAB:	ile -		heor	
1. Evalu	ating the radius of curvature.				
	ng the coordinates of the center of curvature.				
3. Tracir	ng of Curves.				
		La	ıbor	ator	y: 6
	MULTIVARIABLE CALCULUS				15
functions – Ja	atives (excluding Euler's theorem) – Total derivative – Differentia acobian and properties – Taylor's series for functions of two variables actions of two variables.				
	ts using SCILAB:		Tl	heor	y: 9
-	ating the maxima of functions of several variables.				
	ating the minima of functions of several variables.				
	ation of Jacobians.				
		La	ıbor	ator	y: 6
UNIT IV	MULTIPLE INTEGRALS				15
Double inter	rals – Change of order of integration – Area enclosed by plane of	curv	es -	- Tr	inle

integrals – Volume of solids.

Experiments using SCILAB:

- 1. Evaluating area under a curve.
- 2. Evaluating area using double integral..
- 3. Evaluation of volume by integrals.

UNIT V VECTOR CALCULUS

Gradient, divergence and curl (excluding vector identities) – Directional derivative – Irrotational and Solenoidal vector fields – Vector integration – Green's theorem in a plane and Gauss divergence theorem (Statement only) – Simple applications involving cubes and rectangular parallelopipeds.

Experiments using SCILAB:

- 1. Evaluating gradient.
- 2. Evaluating directional derivative.
- 3. Evaluating divergent and curl.

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Use the matrix algebra methods to diagonalize the matrix.

CO2: Determine the evolute of the curve.

CO3: Apply differential calculus ideas on the function of several variables.

CO4: Evaluate the area and volume by applying the concept of multiple integration.

CO5: Utilize the concept of vector calculus in evaluating integrals.

TEXT BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.

REFERENCES:

- 1. M. K. Venkataraman, "Engineering Mathematics", Volume I, 4th Edition, The National Publication Company, Chennai, 2003.
- 2. SivaramakrishnaDass, C. Vijayakumari, "Engineering Mathematics", Pearson Education India, 4th Edition 2019.
- 3. H. K. Dass, and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private Limited, 3rd Edition 2014.
- 4. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, 6th Edition, New Delhi, 2008.
- 5. S.S. Sastry, "Engineering Mathematics", Vol. I & II, PHI Learning Private Limited, 4th Edition, New Delhi, 2014.

LIST OF EQUIPMENTS:

1. SCILAB- Open source

Theory: 9

Laboratory: 6

Theory: 9

Laboratory: 6

TOTAL: 75 PERIODS

15

22CH101	ENGINEERING CHEMISTRY (Common to All Branches)	L 3	Т 0	P 2	C 4
OBJECTIV		3	U	4	4
	e will enable learners to:				
 To g in ch To a 	nderstand the water quality criteria and interpret its applications in wat ain insights into the basic concepts of electrochemistry and implement memical sensors. cquire knowledge on the fundamental principle of energy storage devi- ectric vehicles.	its	appl	icati	ons
Engi	dentify the different types of smart materials and explore their neering and Technology. assimilate the preparation, properties and applications of nanomater s.				
UNIT I	WATER TECHNOLOGY				15
problems chlorination Requiremen conditioning Desalination fouling.	water –Impurities - Drinking water quality parameters –Hardness - Municipal water treatment and disinfection (chlorination ,UV, Ozonation). Boiler troubles- Scales and sludges, Boile ts - Internal treatment (phosphate, colloidal, sodium aluminat g). External treatment –Ion exchange demineralization - Principle, proc n of brackish water: Reverse osmosis –principle-types of membrane on of total, temporary and permanent hardness of water by EDTA met	r f e a ess es, j	brea eed and and proc (Th	ak-p wa Cal foul	oint ter: gon ing. and
	on of chloride content of water sample by argentometric method.				
Determinati	on of alkalinity in water sample				
UNIT II	ELECTROCHEMISTRY AND SENSORS	(La	ıbor	ator	<u>y-6)</u> 15
Introduction potential – electrode po electrode)-id problems, E Chemical se Sensor for h	- Conductance- factors affecting conductance – Electrodes- original single electrode potential, standard electrode potential – measure potential – over voltage - reference electrodes (standard hydrogen electron selective electrode- glass electrode - Nernst equation (derival electrochemical series and its applications. ensors – Principle of chemical sensors – Breath analyzer– Gas sensors ealth care – Glucose sensor.	mer ctro tion	nt o de, i),nu O2 :	f sin calo men	ngle me ica ors
Determinati	on of the amount of acids in a mixture using a conductivity meter. on of the amount of given hydrochloric acid using a pH meter.	(La	ibor	ator	v-6
	ENERGY STORAGEDEVICES AND ENERGYSOURCES	(<u> </u>			<u>15</u>
UNIT III					
Batteries –P cell. Batteries use Nuclear Ene	rimary alkaline battery - Secondary battery - Pb-acid battery, Fuel cell ed in E- vehicle: Ni-metal hydride battery, Li-ion Battery, Li-air Battery ergy – Nuclear fission, fusion, differences, characteristics – nuclear ch nuclear reactor – breeder reactor.	ery	rea		18 -

Determination of single electrode potential of the given electrode. Estimation of the iron content of the given solution using apotentiometer. Determination of electrochemical cell potential (using different electrodes/ different concentrations of electrolytes)

(Laboratory-6) **UNIT IV** SMART MATERIALS FOR ENGINEERING APPLICATIONS 15 Polymers – Definition – Classification – smart polymeric materials - Preparation, properties and applications of Piezoelectric polymer - Polyvinylidene fluoride (PVDF), Electroactive polymer-Polyaniline (PANI) and Biodegradable polymer - Polylactic acid (PLA). Polymer composites: Definition, Classification – FRP's – Kevlar. Shape Memory Alloys: Introduction, Shape memory effect – Functional properties of SMAs – Types of SMA - Nitinol (Ni-Ti) alloys - applications. Chromogenic materials:Introduction – Types - applications. (Theory-9) Determination of themolecular weight of polymer using Ostwald viscometer. Application of polymeric fibers in 3D printing. (Laboratory-6) UNIT V NANO CHEMISTRY 15 Introduction - synthesis - top-down process (laser ablation, chemical vapor deposition), bottomup process (precipitation, electrochemical deposition) – properties of nanomaterials – types nanotubes -carbon nanotubes, applications of CNT - nanocomposites - General applications of nanomaterials in electronics, information technology, medical and healthcare, energy, environmental remediation, construction and transportation industries. (Theory-9) Determination of concentration of BaSO4 nanoparticles by conductometric titrations. Preparation of ZnO nanocrystal by precipitation method.

(Laboratory-6)

TOTAL: 75 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Interpret the water quality parameters and explain the various water treatment methods.

CO2: Construct the electro chemical cells and sensors.

- CO3: Compare different energy storage devices and predict their relevance in electric vehicles.
- **CO4:** Classify different types of smart materials, their properties and applications in Engineering and Technology.

CO5: Integrate the concepts of nano chemistry and enumerate its applications in various fields.

TEXT BOOKS:

- 1. P. C. Jain and Monika Jain, "Engineering Chemistry", 17th Edition, Dhanpat Rai PublishingCompanyPvt. Ltd., New Delhi, 2022.
- 2. SivasankarB., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2012.

REFERENCES:

- 1. S.S. Daraand S.S. Umare, "A Textbook of Engineering Chemistry",12thEdition, S.Chand&Company, NewDelhi, 2013.
- 2. V.R. Gowarikar, Polymer Science, 2nd edition, New Age International Publishers, 2021.
- 3. J. C. Kuriacose and J. Rajaram, "Chemistry in Engineering and Technology", Volume 1&Volume -2, Tata McGraw-Hill Education Pvt. Ltd., 2010.
- 4. Geoffrey A. Ozin, Andre C. Arsenault and Ludovico Cademartiri, "Nanochemistry: A Chemical ApproachtoNanomaterials",2ndEdition,RSC publishers,2015.
- 5. PrasannaChandrasekhar, "Conductingpolymers, fundamentals and applications-Including

Carbon Nanotubes and Graphene", Second Edition, Springer Science & Business Media, New York, 2019.

6. J. Mendham, R. C. Denney, J. D. Barnes, M. J. K. Thomas and B. Sivasankar, "Vogel's Quantitative Chemical Analysis", 6th edition, Pearson Education Pvt. Ltd., 2019.

LIST OF EQUIPMENTS:

- 1. Conductivity meter 20 Nos.
- 2. pH meter 19 Nos.
- 3. Potentiometer 20 Nos.

0000101	PROBLEM SOLVING USING C++	L	T	Р	C
22CS101	(Common to All Branches)	3	0	2	4
OBJECTIV	'ES:				
The Course	will enable learners to:				
•]	o learn problem solving and programming fundamentals.				
	o gain knowledge on pointers and functions.				
• 7	o apply the principles of object orientated programming.				
•]	o understand operator overloading, inheritance and polymorphism	m.			
•]	o use the functionalities of I/O operations, files build C++ progra	ams u	sing		
e	xceptions.				
UNIT I	PROBLEM SOLVING AND PROGRAMMING FUNDAMI	ENTA	ALS		15
Computation	al thinking for Problem solving – Algorithmic thinking for Proble	em sol	ving	- Buil	lding
	blem Solving and Decomposition - Dealing with Error – Evaluat				
	FC – Data types – Identifiers – Variables – Storage Class Spec				
	Expressions - Statements - Arrays and Strings - Single-D	Dimen	siona	ul — 7	Гwo-
Dimensiona	Arrays – Arrays of Strings – Multidimensional Arrays.				
List of Exer					
	e C/C++ programs for the following:				
a 1	8 I I				
	Compute the GCD of two numbers.Find the roots of a number (Newton's method)				
	e C/C++ programs using arrays:				
	. Find the maximum of an array of numbers.				
	. Remove duplicates from an array of numbers.				
	Print the numbers in an array after removing even numbers.				
	e C/C++ programs using strings:				
	. Checking for palindrome.				
	. Count the occurrences of each character in a given word.				
	_				
UNIT II	POINTERS AND FUNCTIONS				15
Pointers -Va	riables - Operators - Expressions - Pointers and Arrays - Funct	ions -	Sco	pe Ru	les –
Function Ar	guments – return Statement – Recursion – Structures – Unions –	Enum	nerati	ons.	
List of Exer		~			
	rate salary slip of employees using structures and pointers.	Crea	ate a	stru	cture
Emp	loyee with the following members:				

EID, Ename, Designation, DOB, DOJ, Basicpay

Note that DOB and DOJ should be implemented using structure within structure. 2. Compute internal marks of students for five different subjects using structures and

	pute internal marks of students for five different subjects using structures	and
	tions.	1 -
UNIT III	CLASSES AND OBJECTS	15
and Objects Memory Al Objects - O	Object Oriented Programming – Benefits of OOP – Simple C++ program - Cla - Member functions - Nesting of member functions - Private member function location for Objects - Static Data Members - Static Member functions - Arra bjects as function arguments - Returning objects - friend functions – Const Mem- Constructors – Destructors.	ons - ay of
List of Exer	cises:	
	e a program Illustrating Class Declarations, Definition, and Accessing Class Mem	bers.
	ram to illustrate default constructor, parameterized constructor and copy construct	
UNIT IV	OPERATOR OVERLOADING, INHERITANCE AND POLYMORPHISM	15
	verloading - Overloading Using Friend functions – Inheritance – Types of inherit se Class - Abstract Class – Constructors in Derived Classes - member class: nesting	
	objects – this pointer- Pointer to derived Class - Virtual functions – Pure Vi	irtual
	Polymorphism.	
 Writ Prog Prog Prog Writ a) S 	e a Program to Demonstrate the i) Operator Overloading. ii) Function Overloadin e a Program to Demonstrate Friend Function and Friend Class. ram to demonstrate inline functions. ram for Overriding of member functions. e C++ programs that illustrate how the following forms of inheritance are suppor Single inheritance b)Multiple inheritance c)Multi level inheritance d)Hierarc nheritance.	ted:
	I/O, FILES AND EXCEPTIONS	15
C++ Stream	s – Unformatted I/O - Formatted Console I/O – Opening and Closing File – File mers and their manipulations – Templates – Class Templates – Function Templates	nodes
List of Exer	rcises:	
 Prog Coursequ Writ 	ram to demonstrate pure virtual function implementation. In the number of account holders whose balance is less than the minimum balance us ential access file. e a Program to Demonstrate the Catching of all Exceptions. project.	ısing
	TOTAL: 45+30 = 75 PERI	ODS
OUTCOM	ES:	
At the end	of this course, the students will be able to:	

At the end of this course, the students will be able to:

CO1: Solve problems using basic constructs in C.

- **CO2:** Implement C programs using pointers and functions.
- **CO3:** Apply object-oriented concepts and solve real world problems.
- **CO4:** Develop C++ programs using operator overloading and polymorphism.

CO5: Implement C++ programs using Files and exceptions.

TEXT BOOKS:

1. Herbert Schildt, "The Complete Reference C++", 4th edition, MH, 2015. (Unit 1 & 2)

2. E Balagurusamy,"Object Oriented Programming with C++", 4th Edition, Tata McGraw-Hill Education, 2008. (Unit 3, 4 & 5)

REFERENCES:

- 1. Karl Beecher,"Computational Thinking: A beginner's guide to problem-solving and programming", BCS Learning & Development Ltd, 2017. (Unit 1)
- 2. Nell Dale, Chip Weems, "Programming and Problem Solving with C++", 5th Edition, Jones and Barklett Publishers, 2010.
- 3. John Hubbard, "Schaum's Outline of Programming with C++", MH, 2016.
- 4. Yashavant P. Kanetkar, "Let us C++", BPB Publications, 2020
- 5. ISRD Group, "Introduction to Object-oriented Programming and C++", Tata McGraw-Hill Publishing Company Ltd., 2007.
- 6. D. S. Malik, "C++ Programming: From Problem Analysis to Program Design", Third Edition, Thomson Course Technology, 2007.
- 7. https://infyspringboard.onwingspan.com/web/en/app/toc/ lex_auth_01297200240671948837_shared/overview

LIST OF EQUIPMENTS:

1. Standalone desktops with C/C++ compiler (or) Server with C/C++ compiler.

ENGINEEKING GULLEGE

	DIGITAL PRINCIPLES AND SYSTEMS DESIGN	L	T	P	С		
22EC101	(Common to All Branches)	3	0	2	4		
OBJECTIV	YES:			I			
The Course will enable learners to:							
• To a	cquire the knowledge in Digital fundamentals and its simplification m	etho	ods.				
	amiliarize the design of various combinational digital circuits using lo						
	ealize various sequential circuits using flip flops.		0				
 To in 	nterpret various clocked sequential circuits.						
• To e	lucidate various semiconductor memories and related technology.						
• To b	uild various logic functions using Programmable Logic Devices.						
UNIT I	BOOLEAN ALGEBRA AND LOGIC GATES				9		
Review of r	number systems-representation-conversions, Review of Boolean alge	bra	- th	eore	ms,		
	luct and product of sum simplification, canonical forms, min term						
Simplification	on of Boolean expressions-Karnaugh map,Implementation of Boole	an	expi	ressi	ons		
using logic g	gates and universal gates.						
List of Exp	gates and universal gates.						
1. Impleme	entation of Boolean expression using logic gates.						
UNIT II	COMBINATIONAL LOGIC CIRCUITS				9		
		D '			-		
-	mbinational circuits - Half and Full Adders, Half and Full Subtractors,		-				
	ry look ahead Adder, Magnitude Comparator, Decoder, Encoder, Pr	1011	ly E	ncoo	Jer,		
List of Exp	x, Parity Generator/Checker						
1. Design of							
0	of subtractors.						
0	of binary adder using IC7483						
•	of Multiplexers &Demultiplexers.						
0	of Encoders and Decoders.						
6							
	18						

6. Impleme UNIT III	entation of a boolean function using a multiplexer.	
UNIT III		-
	SEQUENTIAL CIRCUITS	9
	SR, JK, T, D, Master/Slave FF - operation and excitation tables, Asynchronous	and
•	s Counters Design - Shift registers, Universal Shift Register	
List of Exp		
-	and implementation of 3 bit ripple counters.	
0	and implementation of 3 bit synchronous counter	
	and implementation of shift registers	1 -
UNIT IV	SYNCHRONOUSSEQUENTIAL CIRCUITS DESIGN	9
0	ocked sequential circuits - Moore/Mealy models, state minimization, state assignm	nent
circuit imple		-
UNIT V	MEMORY AND PROGRAMMABLE LOGIC DEVICES	9
	ory structure ROM: PROM – EPROM – EEPROM –RAM – Static and dynamic R	
•	able Logic Devices: Programmable Logic Array (PLA) – Programmable Array L	ogi
(PAL) - Im	plementation of combinational logic circuits using PLA, PAL.	
	TOTAL: 75 PERIO	ODS
OUTCOM	ES:	
CO6: Desig CO7: Perfo time.	narize the various types of memory devices. In the Combinational circuits using Programmable Logic Devices.	
TEXT BOO	rm practical exercises as an individual and / or team member to manage the task ess the experimental results with effective presentation and report.	in
TEXT BOO 1. M. Morri HDL, VHD	rm practical exercises as an individual and / or team member to manage the task ess the experimental results with effective presentation and report. DKS: Is Mano and Michael D. Ciletti, Digital Design, With an Introduction to the Veril- L, and System Verilog, 6th Edition, Pearson, 2018. anan and S.Arivazhagan,Digital Circuits and Design, 5th Edition, Oxford Univer-	og
TEXT BOO 1. M. Morri HDL, VHD 2. S.Salivah	rm practical exercises as an individual and / or team member to manage the task ess the experimental results with effective presentation and report. DKS: Is Mano and Michael D. Ciletti, Digital Design, With an Introduction to the Veril- L, and System Verilog, 6th Edition, Pearson, 2018. anan and S.Arivazhagan,Digital Circuits and Design, 5th Edition, Oxford Univer	og
TEXT BOO 1. M. Morri HDL, VHD 2. S.Salivah Press, 2018 REFEREN 1. A.Anandl 2.WilliamK Inc, 2012	rm practical exercises as an individual and / or team member to manage the task ess the experimental results with effective presentation and report. DKS: Is Mano and Michael D. Ciletti, Digital Design, With an Introduction to the Veril- L, and System Verilog, 6th Edition, Pearson, 2018. anan and S.Arivazhagan,Digital Circuits and Design, 5th Edition, Oxford Univer CES: kumar, Fundamental of digital circuits, 4th Edition, PHI Publication,2016. leitz, Digital Electronics-A Practical approach to VHDL, Prentice Hall Internation 2.	og rsity onal
TEXT BOO 1. M. Morri HDL, VHD 2. S.Salivah Press, 2018 REFEREN 1. A.Anandl 2.WilliamK Inc, 2012	rm practical exercises as an individual and / or team member to manage the task ess the experimental results with effective presentation and report. DKS: Is Mano and Michael D. Ciletti, Digital Design, With an Introduction to the Veril- L, and System Verilog, 6th Edition, Pearson, 2018. anan and S.Arivazhagan,Digital Circuits and Design, 5th Edition, Oxford Univer- CES: kumar, Fundamental of digital circuits, 4th Edition, PHI Publication,2016. leitz, Digital Electronics-A Practical approach to VHDL, Prentice Hall Internation 2. koth, Jr. andLarry L. Kinney, Fundamentals of Logic Design, 7th Edition, Thoms	og sity onal

22CS102

SOFTWARE DEVELOPMENT PRACTICES (Common to All Branches)

L	Т	Р	С
3	0	2	4

OBJECTIVES:

The Course will enable learners to:

- To discuss the essence of agile development methods.
- To set up and create a GitHub repository.
- To create interactive websites using HTML
- To design interactive websites using CSS.
- To develop dynamic web page using Java script.

Software Engineering Practices – Waterfall Model - Agility – Agile Process – Extreme Programming - Agile Process Models – Adaptive Software Development – Scrum – Dynamic Systems Development Method – Crystal – Feature Driven Development – Lean Software Development – Agile Modeling – Agile Unified Process – Tool set for Agile Process.

Introduction to Git –Setting up a Git Repository - Recording Changes to the Repository - Viewing the Commit History - Undoing Things - Working with Remotes -Tagging - Git Aliases - Git Branching - Branches in a Nutshell - Basic Branching and Merging - Branch Management - Branching Workflows - Remote Branches - Rebasing.

Introduction to GitHub – Set up and Configuration - Contribution to Projects, Maintaining a Project – Scripting GitHub.

List of Exercises:

- 1. Form a Team, Decide on a project:
 - a) Create a repository in GitHub for the team.
 - b) Choose and follow a Git workflow
 - Each team member can create a StudentName.txt file with contents about themselves and the team project
 - Each team member can create a branch, commit the file with a proper commit message and push the branch to remote GitHub repository.
 - Team members can now create a Pull request to merge the branch to master branch or main development branch.
 - The Pull request can have two reviewers, one peer team member and one faculty. Reviewers can give at least one comment for Pull Request updating.
 - Once pull request is reviewed and merged, the master or main development branch will have files created by all team members.
- 2. Create a web page with at least three links to different web pages. Each of the web pages is to be designed by a team member. Follow Git workflow, pull request and peer reviews.
- 3. Form a Team, Decide on a project:
 - c) Create a repository in GitHub for the team.
 - d) Choose and follow a Git workflow
 - Each team member can create a StudentName.txt file with contents about themselves and the team project
 - Each team member can create a branch, commit the file with a proper commit message and push the branch to remote GitHub repository.
 - Team members can now create a Pull request to merge the branch to master branch or main development branch.
 - The Pull request can have two reviewers, one peer team member and one faculty. Reviewers can give at least one comment for Pull Request updation.

• Once pull request is reviewed and merged, the master or main development branch will have files created by all team members.

4. Create a web page with at least three links to different web pages. Each of the web pages is to be designed by a team member. Follow Git workflow, pull request and peer reviews.

	esigned by a team member. Follow Oit worknow, pun request and peer reviews	
UNIT II	HTML	15
Introduction	- Web Basics - Multitier Application Architecture - Cline-Side Scripting ve	ersus
Server-side S	Scripting – HTML5 – Headings – Linking – Images – Special Characters	and
Horizontal Ru	ules – Lists – Tables – Forms – Internal Linking – meta Elements – Form input T	ypes
	atalist Elements – Page-Structure Elements.	51
1		
List of Exerc	vises:	
	e web pages using the following:	
1. 01044	Tables and Lists	
•		
•	Image map	
•	Forms and Form elements	
•	Frames	
UNIT III	CSS	15
Inline Styles	- Embedded Style Sheets - Conflicting Styles - Linking External Style Sheet	ets –
-	lements – Backgrounds – Element Dimensions – Box Model and Text Flow – M	
-	edia Queries – Drop-Down Menus – Text Shadows – Rounded Corners – Colo	
	s – Linear Gradients – Radial Gradients – Multiple Background Images – Ir	
	nimations – Transitions and Transformations – Flexible Box Layout Modu	0
Multicolumn		
List of Exerc		
	bly Cascading style sheets for the web pages created.	
UNIT IV		15
	to Scripting – Obtaining user input – Memory Concepts – Arithmetic – Deci	
	ality and Relational Operators – JavaScript Control Statements – Function	
	lules – Programmer-defined functions – Scope rules – functions – Recursion – An	
	and Allocating Arrays – References and Reference Parameters – Passing Array	ys to
Functions – N	Aultidimensional arrays.	
List of Exerc	cises:	
1. Form	n Validation (Date, Email, User name, Password and Number validation) u	ısing
JavaScript.		
UNIT V	JAVASCRIPT OBJECTS	15
Objects – Ma	ath, String, and Date, Boolean and Number, document Object – Using JSO	N to
•	jects – DOM: Objects and Collections – Event Handling.	
I J		
List of Exerc	cises:	

1. Implement Event Handling in the web pages.

Mini Projects-Develop any one of the following web applications (not limited to one) using above technologies.

- a. Online assessment system
- b. Ticket reservation system

- c. Online shopping
- d. Student management system
- e. Student result management system
- f. Library management
- g. Hospital management
- h. Attendance management system
- i. Examination automation system
- j. Web based chat application

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Apply agile development methods in software development practices.

CO2: Set up and create a GitHub repository.

CO3:Develop static and dynamic webpages using HTML.

CO4: Design interactive personal or professional webpages using CSS.

CO5: Develop web pages using Java script with event-handling mechanism.

TEXT BOOKS:

1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", McGraw Hill International Edition, Nineth Edition, 2020.

TOTAL: 75 PERIODS

- 2. Scott Chacon, Ben Straub, "Pro GIT", Apress Publisher, 3rd Edition, 2014.
- 3. Deitel and Deitel and Nieto, "Internet and World Wide Web How to Program", Pearson, 5th Edition, 2018.

REFERENCES:

- 1. Roman Pichler, "Agile Product Management with Scrum Creating Products that Customers Love", Pearson Education, 1 st Edition, 2010.
- 2. Jeffrey C and Jackson, "Web Technologies A Computer Science Perspective", Pearson Education, 2011.
- 3. Stephen Wynkoop and John Burke, "Running a Perfect Website", QUE, 2nd Edition, 1999.
- 4. Chris Bates, "Web Programming Building Intranet Applications", 3rd Edition, Wiley Publications, 2009.
- 5. Gopalan N.P. and Akilandeswari J., "Web Technology", Second Edition, Prentice Hall of India, 2014.
- 6. https://infyspringboard.onwingspan.com/web/en/app/toc/ lex auth 013382690411003904735 shared/overview
- 7. https://infyspringboard.onwingspan.com/web/en/app/ toc/lex_auth_0130944214274703362099_shared/overview

LIST OF EQUIPMENTS:

Systems with either Netbeans or Eclipse

Java/JSP/ISP Webserver/Apache

Tomcat / MySQL / Dreamweaver or

Equivalent/ Eclipse, WAMP/XAMP

00/10101	Heritage of Tamils	L	Т	Р	С
22GE101	(Common to All Branches)	1	0	0	1
OB IE(CTIVES:				
	rse is designed to				
•	Recognize Tamil literature and its significance	in Tar	nil cultu	re	
•	Introduce the Tamils' rich artistic and cultural l				
	Familiarize the different types of folk and mart			unique	to Tamil
•	Nadu.				
•	Acquaint the concept of Thinai in Tamil literat	ure and	l culture	•	
•	Comprehend the significance of Tamil in devel	loping	Indian c	ulture.	
UNIT I	LANGUAGE AND LITERATURE				3
	milies in India - Dravidian Languages – Tamil				
	Tamil – Secular Nature of Sangam Literatur				
	Management Principles in Thirukural - Tamil				
	amil Land - Bakthi Literature Azhwars and Na				
Developmen	t of Modern literature in Tamil - Contribution o				rathidhasan.
UNIT II	HERITAGE - ROCK ART PAINTINGS TO - SCULPTURE	O MO	DERN A	ART	3
Hero stone to	o modern sculpture - Bronze icons - Tribes and	l their l	nandicra	fts - Ar	t of temple car
	assive Terracotta sculptures, Village deities, T				
Making of m	nusical instruments - Mridhangam, Parai, Veena	ai, Yaz	h and Na	adhasw	aram - Role of
Temples in S	Social and Economic Life of Tamils.				-
UNIT III	FOLK AND MARTIAL ARTS				2
Therukoothu					3
snamuattam) yillattar	n, Le	atherpuppetry,
UNIT IV	, Karagattam, VilluPattu, KaniyanKooth , Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS)yillattar	n, Le	-
UNIT IV	, Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS	nils.	2	(\cdot)	atherpuppetry,
UNIT IV Flora and F	, Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils &Aham and Puram Concep	mils. t from	Tholka	ppiyam	atherpuppetry, 3 a and Sangam
UNIT IV Flora and F Literature -	, Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS	mils. t from eracy d	Tholka	ppiyam angam	atherpuppetry, 3 and Sangam Age - Ancient
UNIT IV Flora and F Literature -	, Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concep Aram Concept of Tamils - Education and Lite	mils. t from eracy d	Tholka	ppiyam angam	atherpuppetry, 3 and Sangam Age - Ancient
UNIT IV Flora and F Literature - Cities and Po	, Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concep Aram Concept of Tamils - Education and Lite	nils. t from eracy d Sangai	Tholka luring Sa m Age -	ppiyam angam Overse	atherpuppetry, 3 and Sangam Age - Ancient
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V	, Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concep Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE	mils. t from eracy d Sangar	Tholka uring Sa n Age - TIONA	ppiyam angam Overse L	atherpuppetry, 3 and Sangam Age - Ancient as Conquest of 3
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution	, Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA	mils. t from eracy d Sangar NNNA Cultura	Tholka luring Sa m Age - TIONA l Influer	ppiyam angam Overse L	atherpuppetry, 3 and Sangam Age - Ancient as Conquest of 3 Camils over the
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts o	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The Context 	mils. t from eracy d Sangar N NA Cultura dha Ma	Tholka luring Sa m Age - TIONA l Influen edicine i	ppiyam angam Overse L	atherpuppetry, 3 and Sangam Age - Ancient as Conquest of 3 Camils over the
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts o	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The C f India – Self-Respect Movement – Role of Side 	mils. t from eracy d Sangar N NA Cultura dha Ma	Tholka uring Sa m Age - TIONA l Influen edicine i Books.	ppiyam angam Overse L ace of T n Indig	atherpuppetry, 3 and Sangam Age - Ancient as Conquest of 3 Camils over the
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts o of Medicine	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The C f India – Self-Respect Movement – Role of Side – Inscriptions & Manuscripts – Print History of 	mils. t from eracy d Sangar N NA Cultura dha Ma	Tholka uring Sa m Age - TIONA l Influen edicine i Books.	ppiyam angam Overse L ace of T n Indig	atherpuppetry, 3 a and Sangam Age - Ancient as Conquest of 3 Tamils over the enous Systems
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts of of Medicine	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The C f India – Self-Respect Movement – Role of Side – Inscriptions & Manuscripts – Print History of OMES: 	mils. t from eracy d Sangar N NA Cultura dha Me Tamil	Tholka uring Sa m Age - TIONA l Influen edicine i Books.	ppiyam angam Overse L ace of T n Indig	atherpuppetry, 3 a and Sangam Age - Ancient as Conquest of 3 Tamils over the enous Systems
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts o of Medicine OUTC Uponcom	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The C f India – Self-Respect Movement – Role of Side – Inscriptions & Manuscripts – Print History of OMES: pletionofthecourse, thestudentswill beable to: 	mils. t from eracy d Sangar N NA Cultura dha Ma Tamil	Tholka luring Sa m Age - TIONA l Influen edicine i Books. T	ppiyam angam Overse L ace of T n Indig	atherpuppetry, 3 a and Sangam Age - Ancient as Conquest of 3 Tamils over the enous Systems
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts of of Medicine OUTC Uponcom CO1:State	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The C f India – Self-Respect Movement – Role of Side Inscriptions & Manuscripts – Print History of OMES: pletionofthecourse, thestudentswill beable to: the role of Tamil literature in shaping Tamil Cu 	mils. t from eracy d Sangar N NA Cultura dha Mo Tamil	Tholka luring Sa m Age - TIONA l Influen edicine i <u>Books.</u> T	ppiyam angam Overse L n Indig	atherpuppetry, 3 a and Sangam Age - Ancient as Conquest of 3 amils over the enous Systems ::15PERIODS
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts of of Medicine OUTC Uponcom CO1:State CO2: Expin	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The C f India – Self-Respect Movement – Role of Side – Inscriptions & Manuscripts – Print History of OMES: pletionofthecourse, thestudentswill beable to: 	mils. t from eracy d Sangar N NA Cultura dha Ma Tamil tural ultural umil art	Tholka uring Sa m Age - TIONA I Influen edicine i Books. T roots. and scu	ppiyam angam Overse L n Indig	atherpuppetry, 3 a and Sangam Age - Ancient as Conquest of 3 Camils over the enous Systems ::15PERIODS
UNIT IV Flora and F Literature - Cities and Po Cholas. UNIT V Contribution other parts o of Medicine OUTC Uponcom CO1:State CO2: Expi CO3: Iden	 Valari, Tiger dance - Sports and Games of Tar THINAI CONCEPT OF TAMILS auna of Tamils & Aham and Puram Concept Aram Concept of Tamils - Education and Lite orts of Sangam Age - Export and Import during CONTRIBUTION OF TAMILS TO INDIA MOVEMENT AND INDIAN CULTURE of Tamils to Indian Freedom Struggle – The C f India – Self-Respect Movement – Role of Side – Inscriptions & Manuscripts – Print History of OMES: pletionofthecourse, thestudentswill beable to: the role of Tamil literature in shaping Tamil Curess the cultural and religious significance of Tamil Cures 	mils. t from eracy d Sangar N NA Cultura dha Ma Tamil tutural ultural umil art ttial art	Tholka luring Sa m Age - TIONA l Influen edicine i Books. T roots. and scu s.	ppiyam angam Overse L n Indig	atherpuppetry, 3 a and Sangam Age - Ancient as Conquest of 3 Camils over the enous Systems ::15PERIODS

TEXT-CUM-REFERENCE BOOKS:

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு:
- 1. தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
 கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை
 வெளியீடு)
- 3. வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K. Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S .Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subaramanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) Reference Book

22GE111	COMPUTER AIDED ENGINEERING GRAPHICS	L	T	Р	С
	(Common to All Branches)	1	0	2	2
OBJECTIV	/ES:				
The Course	e will enable learners to:				
• To h	elp students understand universal technical drawing standards.				
	rovide training on drafting software to draw part models.				
-	emonstrate the concepts of orthographic and isometric projections.				
	se drawing skills for communicating concepts, ideas for engineering	orod	uct		
desig					
	pictorial views to visualize and draw the isometric view of the objects	5.			
UNIT I	INTRODUCTION TO CONVENTIONS IN ENGINEERING D		WIN	IG	9
	AND CONIC SECTIONS				
Introduction	to Engineering Drawing - Importance of graphics in engineering app	lica	tion	s – t	Use
of drafting i	nstruments - BIS conventions and specifications - Size, layout and fo	oldin	ig of	f	
drawing she	ets – Lettering and dimensioning. Conic curves - Ellipse, Parabola an	d H	yper	bola	a by
Eccentricity	method.				
			`	2	- 3)
-	a title block with necessary text, projection symbol and lettering using	g dra	aftin	g	
software.					
Drafting of	Conic curves - Ellipse, Parabola and Hyperbola	(Τ 1			\sim
		(Lab	orat	ory	
UNIT II	ORTHOGRAPHIC PROJECTION				9
	n concepts and Orthographic Projection - Layout of views – Orthogra	phic	2		
Projection-	Conversion of pictorial diagram into orthographic views.				
	24				

		(Theory	- 3)
Drawing or dimensionir	thographic view of simple solids like Prism, Pyramids, Cylinder, C	Cone, etc, and	
	6	oratory -6)	
UNIT III	PROJECTION OF PLANES		9
Projection of	of planes (polygonal and circular surfaces) inclined to both the plan	es by rotating	
object meth		8	
5		(Theory	- 3)
Drawing of	plane Surface inclined to HP.		
		atory -6)	
	PROJECTION OF SOLIDS		9
•	of simple solids like Prisms, Pyramids, Cylinder and Cone when th	e axis is incline	ed
to HP by ro	tating object method.	(
		(Theory	- 3)
	simple solids like prism and pyramids when the axis is inclined to simple solids like cylinder and cone when the axis is inclined to H		
Drawing of	simple solids like cylinder and cone when the axis is inclined to H	(Laboratory	7-6)
UNIT V	ISOMETRIC DRAWING	(Laboratory	9
	of isometric view – Isometric view of simple solids – Prism, Pyram	id Culindar an	-
Cone.	s isometric view – isometric view of simple solids – Frish, Fyran	iu, Cymuei an	u
cone.		(Theory	- 3)
Drawing iso	ometric projection of simple solids.		- /
0	of 2D to 3D objects using drafting software.		
_		(Laboratory	7-6)
	ТОТ	AL: 45 PERIC	DDS
OUTCOM	ES:		
At the end	of this course, the students will be able to:		
	ain the various engineering standards required for drafting and exp	lore knowledge	in
	e sections.		
CO2: Draw	v the orthographic views of 3Dprimitive objects.		
	ribe the projection of plane surfaces by the rotating plane method.		
	y the projection concepts and drafting tools to draw projections of	solids. CO5:	
Sketch the p	pictorial views of the objects using CAD tools.		
TEXT BO			
1. Nataraja	an K.V., "A text book of Engineering Graphics", Dhanalakshmi P	ublishers, Chen	nai,
-	lition, 2020.		-
2. Venugo	pal K. and Prabhu Raja V., "Engineering Graphics", New Age Inte	ernational	
(P) Lim	ited, 15th Edition, 2019.		
REFEREN			
	D. "Engineering Drawing", Charotar Publishing House, 53rd editi		
	Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGra	aw Hill Publish	ning
-	ny Limited, New Delhi, 3rd Edition, 2019.	(D2008) Dublic	had
-	ering Drawing Practice for Schools and Colleges BIS SP46:2003 (eau of Indian Standards (BIS), 2008.	$(\mathbf{X}_{2000}), \mathbf{P}_{0011S}$	meu
•	arathy. N.S and Vela Murali, "Engineering Graphics", Oxford Uni	versity Press N	New
Delhi, 2			
	krishna. K.R., Engineering Drawing Vol. 1 & 2, Subhas Publicat	ions, 27th Edit	ion,
2017.			-

22GE112	PRODUCT DEVELOPMENT LAB - I	Т	P	С
	(Common to All Branches) 0	0	2	1
	s may be grouped into 3 to 4 and work under a pro-			
•	n/component/prototype Idea to be developed by the students a		nal pre	esentation
	the students about the idea generated at the end of the semest	ter.		
	CTIVES:			
The Course	will enable learners to:			
• Unde	rstand the functionalities and limitation of various machine/ed	quipme	ent	
	onstrate various operations that can be performed to machines			
• Sumi	narize the basic principles of machines to convert their ideas in	nto pro	oducts	
•	of Manufacturing Processes (Carpentry, Plumbing, Machines		-).
	of fundamental operations of 3D Printer and Scanner with So			
	of Smart Machining (CNC and Laser cutting) and Engraving	Techni	ques.	
•	of Fundamental of Circuit Design.			
	of PCB Milling Machine.			
	of Soldering and Desoldering.	• 、		
III I. Study	of Computer Peripheral Devices (Processing Information Dev	ices)		
IV 1. Prese	nt the Product Idea Presentation - Phase – I.		20 D	EDIOD
		UTAL	: 30 P	ERIOD
Note:	and aslast the most stores to be made of their sheirs often learning	~ 4 1 • ~ .	1	
	can select the prototype to be made of their choice after learnin OMES:	ig the a	ibove	exercise
	etion of the course, the students will be able to:			
	stand the concept of manufacturing processes.			
	be the working of the machine element.			
	s the various applications of engineering materials			
	arize the basics of core engineering concepts.			
	be the process for converting ideas into products			
	OF EQUIPMENTS:			
	Router – 1 No.			
	rinter – 1 No.			
	canner – 1 No.			
	cutting Machine – 1 No.			
	e lathe – 2 Nos.			
	elding transformer with cables and holders – 2 Nos.			
7. Plum	velding transformer with cables and holders -2 Nos. bing tools -2 Nos.			
	bing tools – 2 Nos.			
8. Carp	bing tools – 2 Nos.			
 8. Carp 9. Mult 	bing tools – 2 Nos.			
 8. Carp 9. Mult 10. Drilli 	bing tools -2 Nos. entry tools -2 Nos.			
8. Carp 9. Mult 10. Drilli 11. Solde	bing tools – 2 Nos.			
 8. Carp 9. Mult 10. Drilli 11. Solde 12. Deso 	bing tools – 2 Nos. entry tools – 2 Nos. meter – 10 Nos. ng Machine – 1 No.			
 8. Carp 9. Mult 10. Drilli 11. Solde 12. Deso 13. PCB 	bing tools – 2 Nos. entry tools – 2 Nos. meter – 10 Nos. ng Machine – 1 No. er Stations 5 Sets Idering Machine – 1 No.			
 8. Carp. 9. Mult. 10. Drilli 11. Solde 12. Deso 13. PCB 14. Varia 	bing tools – 2 Nos. entry tools – 2 Nos. meter – 10 Nos. ng Machine – 1 No. or Stations 5 Sets Idering Machine – 1 No. Milling Machine – 1 No.	, Capa	citor, e	etc. – 10
 8. Carp. 9. Mult. 10. Drilli 11. Solde 12. Deso 13. PCB 14. Varia 	bing tools – 2 Nos. entry tools – 2 Nos. meter – 10 Nos. ng Machine – 1 No. er Stations 5 Sets Idering Machine – 1 No. Milling Machine – 1 No. ble Power Supply – 1 No.	, Capa	citor, e	etc. – 10

22MA201 TRANSFORMS AND NUMERICAL METHODS	L	Т	Р	С
	3	0	2	4
OBJECTIVES:				
The Course will enable learners to:				
• Introduce the concepts of Laplace transforms and Z-transforms.	:			
• Illustrate the application of transforms in solving differential and d				
 Explain the Numerical methods for handling algebraic and transcer Introduce the numerical techniques for interpolation, differentiation 				
UNIT I LAPLACE TRANSFORMS	n and	Integr	ation	15
Laplace transforms – Sufficient condition for existence – Transform o	f eler	nentar	v fur	
Basic properties – Transforms of derivatives and integrals of func				
integrals of transforms –Transforms of unit step function and impulse				
periodic functions. Inverse Laplace transform – Convolution theorem (
			-	heory: 9
Experiments using SCILAB:				
1. Finding Laplace transform of a function.				
2. Finding inverse Laplace Transforms.	c			
3. Determine the input for given output function of Laplace Trans	form		r 1	
	-		Laboi	atory: 6
UNIT IIZ – TRANSFORMSZ-transforms – Elementary properties – Inverse Z-transforms – par	etiol 1	Fractio	na m	15 othod
residues method – Convolution theorem.		lactio	115 111	etilou –
residues method convolution decirem.			Т	heory: 9
Experiments using SCILAB:			_	
1. Finding Z –transform of a sequence.				
2. Finding convolution of two sequences.				
3. Plotting the input and output function of Z transform.				
	~T		Labor	atory: 6
UNIT III SOLUTION OF DIFFERENTIAL AND DIFFERENT EQUATIONS	CE			15
Solution of linear ordinary differential equation of second order with a	consta	ant co	effici	ents and
first order simultaneous equations with constant coefficients us				
Formation of difference equations - Solution of first and second order of	liffere	ence e	quati	ons with
constant coefficients using Z-transform.			_	
			Т	heory: 9
 Experiments using SCILAB: 1. Solving second order Ordinary Differential Equation. 2. Finding the Laplace transform and its inverse of a function num 	Ц			
 Solving second order Ordinary Differential Equation. Finding the Laplace transform and its inverse of a function run. 	norias	11.7		
 Finding the Laplace transform and its inverse of a function nun Finding the Z-transform numerically 	nerica	ury.		
5. I maning the Z-transform numerically			Labo	atory: 6
UNIT IV SOLUTION OF EQUATIONS AND EIGENVALUE	PRO			15
Solution of algebraic and transcendental equations by Newton Raphs				
linear system of equations - Gauss elimination method - Gauss Jordan				
Iterative method– Eigenvalues of a matrix by Power method.			Т	heory: 9
Iterative method– Eigenvalues of a matrix by Power method.			T	heory: 9
 Iterative method– Eigenvalues of a matrix by Power method. Experiments using SCILAB: 1. Finding the real roots of algebraic and transcendental equations 		g Nev		·
Iterative method– Eigenvalues of a matrix by Power method. Experiments using SCILAB:		g Nev		·

3. Solving system of linear equations using Gauss Seidel Method.

5. Solving system of mear equations using Gauss Selder Method.	I shared a mark
	Laboratory: 6
UNIT V NUMERICAL DIFFERENTIATION AND INTEGRATION	
Finite differences – Forward and Backward differences – Interpolation – Newton	
backward interpolation formulae - Lagrange's interpolation for unequal interva	
Differentiation - Newton's and Lagrange's formulae - Numerical integration using	0 1
and Simpson's 1/3 rules – Evaluation of double integrals by Trapezoidal and	Simpson's 1/3
rules.	
	Theory: 9
Experiments using SCILAB:	
1. Finding approximately the missing value using Lagrange interpolation.	
2. Evaluating line integrals by trapezoidal rule.	
3. Evaluating line integrals by Simpson's rule.	
	Laboratory: 6
	75 PERIODS
OUTCOMES:	
Upon completion of the course, the students will be able to:	
CO1: Determine Laplace transform and inverse transform of simple functions.	
CO2: Determine Z- transform and inverse transform of simple functions.	
CO3: Solve ordinary differential equations using Laplace transform and differentiate and the second secon	ence equations
using Z-Transform.	4
CO4: Compute the solutions of algebraic, transcendental and the system of equal CO5: Appropriate the pumprised techniques of interpolation in various intervals	
CO5: Appreciate the numerical techniques of interpolation in various intervals numerical techniques of differentiation and integration for engineering pro-	
TEXTBOOKS:	
13. Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics	" Firewall
Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7 th E	
14. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering	
Khanna Publishers, 10 th Edition, New Delhi, 2015.	and Science,
REFERENCES:	and Sama 10th
1. Erwin. Kreyszig, "Advanced Engineering Mathematics", John Wiley Edition, New Delhi, 2016.	and Sons, 10
2 Join D. K. and Ivanger S. D. K. "A dyanged Engineering Mathematics" N	Iaroca
 Jain R.K. and Iyengar S. R. K., "Advanced Engineering Mathematics", N Publications, New Delhi, 3rd Edition, 2007. 	larosa
	to MaCant
 Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics", Ta Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012. 	lla MCGIaw
	ain a anima", 2nd
4. Mathews, J.H. "Numerical Methods for Mathematics, Science and Eng Edition, Prentice Hall, 1992.	gineering, 2
	a Dart I to 5 th
5. Sastry S.S, "Introductory Methods of Numerical Analysis", PHI Learning Edition, 2015.	g r vi. Liu, 5

2205201	DATA STRUCTURES	L	Т	P	С
22CS201		3	0	2	4
OBJE	CTIVES:				
The Course	will enable learners to:				
• To under	stand the concepts of List ADT.				
• To learn	linear data structures – stacks and queues ADTs.				
• To under	stand and apply Tree data structures.				
• To under	stand and apply Graph structures.				
• To analy	ze sorting, searching and hashing algorithms.				
UNIT I	LINEAR DATA STRUCTURES – LIST				15

Algorithm analysis - running time calculations - Abstract Data Types (ADTs) – List ADT array- based implementation – linked list implementation – singly linked lists - circular linked lists - doubly-linked lists – applications of lists – Polynomial Manipulation – A operations (Insertion, Deletion, Merge, Traversal).
linked lists - doubly-linked lists - applications of lists - Polynomial Manipulation - A
linked lists - doubly-linked lists - applications of lists - Polynomial Manipulation - A
List of Exercises:
• Array implementation of List ADTs.
• Linked list implementation of List ADTs.
UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES 15
Stack ADT – Stack Model - Implementations: Array and Linked list - Applications - Balancin
symbols - Evaluating arithmetic expressions - Conversion of Infix to postfix expression
Queue ADT – Queue Model - Implementations: Array and Linked list - applications of queu
- Priority Queues – Binary Heap – Applications of Priority Queues.
List of Exercises:
• Array implementation of Stack and Queue ADTs.
• Linked list implementation of Stack and Queue ADTs.
 Applications of List – Polynomial manipulations
• Applications of Stack – Infix to postfix conversion and expression evaluation.
UNIT IIINON LINEAR DATA STRUCTURES – TREES15
Tree ADT – tree traversals - Binary Tree ADT – expression trees – applications of trees –
binary search tree ADT– AVL Tree.
List of Exercises:
• Implementation of Binary Trees and operations of Binary Trees.
Implementation of Binary Search Trees.
Implementation of Heaps using Priority Queues.
UNIT IVNON LINEAR DATA STRUCTURES - GRAPHS15
Definition – Representation of Graph – Types of graph - Breadth-first traversal - Depth-firs
traversal – Topological Sort – Applications of graphs – BiConnectivity – Euler circuits.
List of Exercises:
Graph representation and Traversal algorithms.
UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES 15
Searching- Linear Search - Binary Search - Sorting - Bubble sort - Selection sort - Insertion
sort – Hashing - Hash Functions – Separate Chaining – Open Addressing – Rehashing –
Extendible Hashing.
List of Exercises:
• Implement searching and sorting algorithms.
TOTAL: 75 PERIOD
OUTCOMES: Out of the second se
Upon completion of the course, the students will be able to:
CO1: Implement abstract data types for list.
CO2: Solve real world problems using appropriate linear data structures.
CO3: Apply appropriate tree data structures in problem solving.
CO4: Implement appropriate Graph representations and solve real-world applications.
CO5: Implement various searching and sorting algorithms.
TEXTBOOKS:
1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 4th Edition,
Decrean Education 2014
Pearson Education, 2014.
 Pearson Education, 2014. 2. Sartaj Sahni, "Data Structures, Algorithms and Applications in C++", Silicon paper publications, 2004.

REFERENCES:

- 1. Rajesh K. Shukla, "Data Structures using C and C++", Wiley India Publications, 2009.
- 2. Narasimha Karumanchi, "Data Structure and Algorithmic Thinking with Python: Data Structure and Algorithmic Puzzles", CareerMonk Publications, 2020.
- 3. Jean-Paul Tremblay and Paul Sorenson, "An Introduction to Data Structures with Application", McGraw-Hill, 2017.
- 4. Mark Allen Weiss, "Data Structures and Algorithm Analysis in Java", Third Edition, Pearson Education, 2012.
- 5. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", Second Edition, University Press, 2008.
- 6. Ellis Horowitz, Sartaj Sahni, Dinesh P Mehta, "Fundamentals of Data Structures in C++", Second Edition, Silicon Press, 2007.
- 7. https://infyspringboard.onwingspan.com/web/en/app/ toc/lex_auth_01350157816505139210584/overview

	PHYSICS FOR COMPUTER SCIENCE AND	L	Т	Р	С
22PH201	INFORMATION TECHNOLOGY	3	0	2	4
	(Common to All Branches)	3	U	4	4
OBJE	CTIVES:				
The Course	will enable learners to:				
• Learn th	e fundamental concepts of Physics and apply this kn	owled	ge to	scie	entific,
engineeri	ng and technological problems.				
• Make the	students enrich basic knowledge in electronics and quant	um co	ncept	s and	apply
the same	in computing fields.				
UNIT I	LASER AND FIBRE OPTICS		· · · ·		15
Population o	f energy levels – Einstein's A and B coefficients derivati	on - F	Resona	ant c	avity -
Optical ampl	ification (qualitative) - Semiconductor lasers: homojuncti	on an	d hete	rojur	nction-
Engineering	applications of lasers in data storage (qualitative).				
	Principle and propagation of light through optical fibre -				
	s (Material, refractive index and mode) - Losses in opti	cal fi	bre -	Fibre	e optic
communicati	on - Fibre optic sensors (pressure and displacement).				
			(Theo	ory -9)
List of Expe					
	ination of divergence of laser beam				
2. Determ	ination of acceptance angle and numerical aperture of an o	-			
		(Labo	ratory	-6)	
UNIT II	ELECTRON THEORIES OF MATERIALS				15
	ee electron theory - Expressions for electrical cond				
•	- Wiedemann-Franz law - Success and failures of CFT- E		-		
	on- Density of energy states and average energy of electron	n at 0 I	K - En	ergy	bands
in solids.					
		(5	F 1	\mathbf{O}	
Lint of Errer		(.	Theory	y -9)	
List of Expe		a diaa	ma atla		
	nation of thermal conductivity of a bad conductor by Lee' ment of the internal resistance using potentiometer	s uisc	methe	Ju	
\angle . weasure	(Laboratory -6)				
UNIT III	SEMICONDUCTOR PHYSICS				15
	iconductors – E-kdiagram-Direct and indirect band gap se	micor	ducto	ra (
	in intrinsic semiconductors- Band gap determination-Ex				
concentration	i in mumsic seniconductors- Danu gap determination-Ex	umsi	, seiiii	COIIC	uciors

- Carrier concentration in n-type and p-type semiconductors -Electrical conductivity of intrinsic and extrinsic semiconductors -Variation of Fermi level with temperature and impurity concentration - Hall effect and its applications.

(Theory -9)

List of Experiments

- 1. Bandgap determination of intrinsic semiconductor.
- 2. Determination of wavelength of semiconductor laser

(Laboratory -6)

15

UNIT IV

INTRODUCTION TO NANO DEVICES AND QUANTUM COMPUTING

Introduction to nanomaterial -Electron density in a bulk material - Size dependence of Fermi energy - Quantum confinement - Quantum structures - Density of states in quantum well, quantum wire and quantum dot structures - Band gap of nanomaterial.

Quantum computing: Quantum states - classical bits - quantum bits or qubits - CNOT gate - multiple qubits - Bloch sphere - quantum gates - advantages of quantum computing over classical computing.

(Theory - 9)

List of Experiments

- 1. Synthesis of nanoparticles by sol-gel method
- 2. Determination of particle size using laser source

(Laboratory - 6)

UNIT VMAGNETIC AND SUPERCONDUCTING MATERIALS15

Introduction- Bohr magneton -magnetic dipole moment - origin of magnetic moments - types of magnetic materials-Ferromagnetism: Domain Theory - antiferromagnetism ferrimagnetism - magnetic principle in computer data storage - Magnetic hard disc (GMR sensor) - Introduction to spintronics.

Superconducting materials – properties, types of superconductors, applications – SQUID and MAGLEV trains - *superconducting qubits in quantum computing*.

List of Experiments

- 1. Determination of hysteresis loss using B-H loop
- 2. Determination of magnetic susceptibility of a paramagnetic liquid using Quincke's apparatus

(Laboratory -6)

TOTAL: 75 PERIODS

(Theory -9)

OUTCOMES:

Upon completion of the course, the students will be able to:

- **CO1:** Discuss the basic principles of working of laser and their applications in fibre optic communication
- **CO2:** Summarize the classical and quantum electron theories and energy band structures
- **CO3:** Describe the conductivity in intrinsic and extrinsic semiconductors and importance of Hall effect measurements
- **CO4:** Associate the properties of nanoscale materials and their applications in quantum computing
- **CO5:** Interpret the properties of magnetic and superconducting materials and their applications in computer data storage

TEXTBOOKS:

- 1. **S.O. Kasap**, Principles of Electronic Materials and Devices, McGraw-Hill Education (Indian Edition) 2020.
- 2. **Jasprit Singh**, Semiconductor Devices: Basic Principles, Wiley (Indian Edition) 2007.
- 3. **Parag K Lala**, Quantum Computing: A Beginner's Introduction, McGraw-Hill Education (Indian Edition) 2020.

REFERENCES:

- 1. **R.P. Feynman**, The Feynman Lectures on Physics Vol. II, The New Millennium Edition, 2012.
- 2. **M.A.Wahab**, Solid State Physics, 3rd Edition, Narosa Publishing House Pvt. Ltd., 2015.
- 3. **B.Rogers, J. Adams and S.Pennathur**, Nanotechnology: Understanding Small System, CRC Press, 2014.
- 4. C.P. Williams, Explorations in Quantum Computing, Springer-Verlag London, 2011.
- 5. Wilson J.D. and Hernandez C.A., Physics Laboratory Experiments, Houghton Mifflin Company, New York 2005.
- 6. **Department of Physics,** Physics laboratory manual, R.M.K. Group of Institutions, 2021.

	PROFESSIONALCOMMUNICATION	L	Т	Р	C
22HS101	(Common to All Branches)	2	0	2	3
OBJECTI	VES:		•		
The Course will	enable learners to:				
 Strengthen ba 	asic reading and writing skills.				
• Comprehend	listening contexts competently.				
 Inculcate read 	ding habit and develop effective reading skills.				
Improve activ	ve and passive vocabulary.				
• Acquire spee	ch clarity with right pronunciation.				
 Develop voca 	abulary of a general kind and enhance grammatical accuracy.				
• Imbibe Conte	ent and Language Integrated Learning(CLIL).				
UNIT I	FORMAL AND INFORMAL COMMUNICATION				12
Listening: Sho	ort Texts, Short Formal and Informal Conversations				
	f Introduction, Exchanging Personal Information				
	tice in Skimming, Scanninga nd Predicting, Reading Compre	hensio	n		
-	Writing, Hints Development				
	rts of Speech, Prepositions.				
Vocabulary: (Compound Nouns, Technical Words.				
				(Th	eory6)
	onofVowelSounds-Monophthongs,DiphthongsandConsonant	Sounds	5		
	ormalConversations inBritishandAmericanAccents				
3. GuidedWritin	ng			(T 1	
				(Labora	
UNIT II	GRAMMAR AND LANGUAGE DEVELOPMENT				12
U 1	honicConversations.				
	nginformationofapersonalkind-Greetings–Takingleave.				
	omprehensionpassages-Pre-readingandPost- choicequestionsshortquestions/openandcloseendedquestions)				
	ions,Recommendations,Checklists				
winng:mstruct	ions, Accommendations, Checkness				

Crammar: Tenses Framing (Wh'& Ves'or No'questions	
Grammar: Tenses, Framing 'Wh'& 'Yes' or 'No' questions Vocabulary: Numerical Adjectives, Collocations	
vocabulary. Numerical Aujectives, Conocations	(Theory6)
1. CommunicationEtiquettes	(Theoryo)
2. Self-IntroductionusingSWOTAnalysis	
2. Sen-Introductionusings w OT Anarysis	(Laboratory6)
UNIT III BASICTECHNICALWRITINGANDSTUDYSKILLS	12
Listening:Listening tolongertextsandfilling up thetables	14
Speaking: Asking about routine actions and expressing opinions	
Reading: Shorttexts (ClozeTest)	
Writing:Formalletters,E-mailwriting,InterpretationofChartsandGraphs	
Grammar:CauseandEffectexpressions,ConditionalClauses	
Vocabulary:Oftenmisspelledandconfusing words	
vocabulary: Ortenninssperiedandeoinfusing words	(Theory6)
MechanicsofReadingSkills	(Theoryo)
NewsReading-ClozeTests	
	(Laboratory6)
UNIT IV GROUPDISCUSSIONAND JOBAPPLICATIONS	
Listening:Listeningtorecordeddialoguesofconversationsandcompletingexercisesbased of	
	Jimeni
Speaking:DiscussiononSocialissues.	
Reading:Readingtext frommagazines	
Writing:PurposeExpressions,LetterofApplication,MinutesofMeeting. Grammar: ModalVerbs, Subject-Verbagreement	
Vocabulary:SequenceWords	
	(Theory 6)
1 Group Procentation Group Discussion: Do's and Don'ts of Group Discussion	(Theory6)
 Group Presentation, Group Discussion: Do's andDon'ts ofGroupDiscussion Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors 	(Theory6)
 Group Presentation, Group Discussion: Do's andDon'ts ofGroupDiscussion Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors 	•
2. Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors	(Laboratory6)
2. Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING	· · ·
2. Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks	(Laboratory6)
2. Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations	(Laboratory6)
2. Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Image: Comparison of the presentation of the pres	(Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentand) 	(Laboratory6)
2. Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl) Grammar:Reportedspeech Output	(Laboratory6)
2. Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary:VerbalAnalogies (Theory6)	(Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions 	(Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions 	(Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions 	(Laboratory6) 12 Feasibilityreports)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary:VerbalAnalogies (Theory6) Writingbasedonlisteningto academic lecturesanddiscussions 	(Laboratory6) 12 Feasibilityreports)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary:VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions Leadershipskills,Negotiationskills MechanicsofReportWriting LISTOFPROJECTS 	(Laboratory6) 12 Feasibilityreports)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions Leadershipskills,Negotiationskills MechanicsofReportWriting LISTOFPROJECTS Createapodcastonatopicthatwillbeinterestingtocollegestudents 	(Laboratory6) 12 Feasibilityreports)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary:VerbalAnalogies	(Laboratory6) 12 Feasibilityreports)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies	(Laboratory6) 12 Feasibilityreports)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies	(Laboratory6) 12 Feasibilityreports) (Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline & Extended), ReportWriting(Industrialvisit, Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions Leadershipskills, Negotiationskills MechanicsofReportWriting LISTOFPROJECTS Createapodcastonatopicthatwillbeinterestingtocollegestudents ReadandReview(Movie/Book/TechnicalArticle) PresentationonSocialIssues Submitareporton"GlobalEnglish:Astudy" 	(Laboratory6) 12 Feasibilityreports) (Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies (Theory6) Writingbasedonlisteningto academic lecturesanddiscussions Leadershipskills,Negotiationskills MechanicsofReportWriting LISTOFPROJECTS Createapodcastonatopicthatwillbeinterestingtocollegestudents ReadandReview(Movie/Book/TechnicalArticle) PresentationonSocialIssues Submitareporton"GlobalEnglish:Astudy" 	(Laboratory6) 12 Feasibilityreports) (Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary:VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions Leadershipskills,Negotiationskills MechanicsofReportWriting LISTOFPROJECTS Createapodcastonatopicthatwillbeinterestingtocollegestudents ReadandReview(Movie/Book/TechnicalArticle) PresentationonSocialIssues Submitareporton"GlobalEnglish:Astudy" TO OUTCOMES: Upon completion of the course, the students will be able to: 	(Laboratory6) 12 Feasibilityreports) (Laboratory6)
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary:VerbalAnalogies Writingbasedonlisteningto academic lecturesanddiscussions Leadershipskills,Negotiationskills MechanicsofReportWriting LISTOFPROJECTS Createapodcastonatopicthatwillbeinterestingtocollegestudents ReadandReview(Movie/Book/TechnicalArticle) PresentationonSocialIssues Submitareporton"GlobalEnglish:Astudy" TO OUTCOMES: Upon completion of the course, the students will be able to: CO1:ComprehendconversationsandshorttalksdeliveredinEnglish 	(Laboratory6) 12 Feasibilityreports) (Laboratory6) TAL: 60 PERIODS
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies	(Laboratory6) 12 Feasibilityreports) (Laboratory6) TAL: 60 PERIODS
 Discussionsonfailureandsuccessininterviewsoffamouspersonalities SpottingErrors UNIT V ARTOFREPORTING Listening: Listening to TED talks Speaking: Debate & Presentations Reading:Biographies Writing:Definitions(Singleline&Extended),ReportWriting(Industrialvisit,Accidentandl Grammar:Reportedspeech Vocabulary: VerbalAnalogies (Theory6) Writingbasedonlisteningto academic lecturesanddiscussions Leadershipskills,Negotiationskills MechanicsofReportWriting LISTOFPROJECTS Createapodcastonatopicthatwillbeinterestingtocollegestudents ReadandReview(Movie/Book/TechnicalArticle) PresentationonSocialIssues Submitareporton"GlobalEnglish:Astudy" 	(Laboratory6) 12 Feasibilityreports) (Laboratory6) TAL: 60 PERIODS

CO4:Write shortgeneralessays,personallettersandE-mailsinEnglishCO5: Develop vocabulary of a general kind by enriching reading skills

TEXTBOOKS:

- 1. Kumar, Suresh E, & Sreehari, P. Communicative English. Orient Black Swan, 2007.
- 2. **Richards, JackC.**InterchangeStudents'Book-2NewDelhi:CUP,2015. **REFERENCES:**
- 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York:Rutledge,2011.
- 2. **Dhanavel,SP.**English and SoftSkills,VolumeTwo,OrientBlackSwan.
- 3. Elbow, Peter. *Writing WithoutTeachers*. London: OxfordUniversityPress, 1973.
- 4. Larsen, Kristine. *StephenHawking:ABiography*, Greenwood: PublishingGroup, 2005.
- 5. **Redston, Chris & Gillies Cunningham.** Face2Face (Pre- intermediate Students'Book &Workbook)Cambridge UniversityPress,New Delhi:2005.
- 6. Lewis, Norman. WordPowerMadeEasy, LatestEdition: PenguinRandomHouseIndia: 2015

WEB REFERENCES:

- 1. Basics of Business Communication https://infyspringboard.onwingspan.com/en/app/toc/lex_auth_01268876808363212830 8_shared/overview
- communicating to Succeedhttps://infyspringboard.onwingspan.com/en/app/toc/lex_auth_0126866536191 75424640_shared/overview

3.

BusinessEnglishhttps://infyspringboard.onwingspan.com/en/app/toc/lex_auth_012683227498151936279_s hared/overviewhttps://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01326770836790476857 3/overview(labsupport)

4.

BusinessWritinghttps://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012689477 60100966433_shared/overview

5. Email

Etiquetteshttps://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013294623865561088 17682_shared/overview

6. Email Writing

Skillshttps://infyspringboard.onwingspan.com/en/app/toc/lex_auth_01268954363013529666_s hared/overview

7. Time

Managementhttps://infyspringboard.onwingspan.com/en/app/toc/lex_auth_01298592121073 6640721_shared/overview

8. Understanding Body

Languagehttps://infyspringboard.onwingspan.com/en/app/toc/lex_auth_012979737651445760 24689_shared/overview

ONLINERESOURCES:

https://infyspringboard.onwingspan.com/web/en/page/home

22CS202	JAVA PROGRAMMING	L	Т	P	С	
220.5202		3	0	2	4	
OBJECTIV	OBJECTIVES:					
The Course will e	enable learners to:					
• To explain obj	ect oriented programming concepts and fundame	ntals of	Java			
• To apply the p	rinciples of packages, interfaces and exceptions					
• To develop a J	ava application with I/O streams, threads and get	neric pro	gram	ming		
-	cations using strings and collections.	1	2	U		

UNIT I JAVA FUNDAMENTALS	15
An Overview of Java - Data Types, Variables, and Arrays – Operators - Control St Class Fundamentals – Declaring objects – Methods – Constructors – this keyword Overloading methods - Overloading constructors - Access Control – Static – Final	
List of Exercises: 1. Develop a Java application to generate Electricity bill. You must use one super cl Bill and must have two sub classes namely Domestic Bill and Commercial Bill. (with the following members: Consumer no., consumer name, previous month rea month reading, type of EB connection (i.e domestic or commercial). Compute th using the following tariff If the type of the EB connection is domestic, calculate the amount to be paid as fol 100 units - Rs. 1 per unit	Create a clas ading, curren e bill amoun
100 units - Rs. 1 per unit 101-200 units - Rs. 2.50 per unit 201 -500 units - Rs. 4 per unit	
> 501 units - Rs. 6 per unit	
If the type of the EB connection is commercial, calculate the amount to be paid as	follows:
First 100 units - Rs. 2 per unit	
101-200 units - Rs. 4.50 per unit 201 -500 units - Rs. 6 per unit	
> 501 units - Rs. 7 per unit	
2. Arrays Manipulations: (Use Methods for implementing these in a Class)	
a. Find kth smallest element in an unsorted array	
b. Find the sub array with given sum	
c. Matrix manipulations – Addition, Subtraction, Multiplication	
d. Remove duplicate elements in an Array	22156
e. Accept an integer value N and print the Nth digit in the integer sequence 1,	2, 5, 4, 5, 6
7, 8, 9, 10, 11, 12, 13, 14, 15 and so on till infinity.	
Example: The 11th digit in the sequence 12345678910111213 is 0. UNIT II INHERITANCE, INTERFACES AND EXCEPTION HANDLIN	NG 15
Inheritance: Inheritance basics, Using super, Method Overriding, Using Abstract C	
final with Inheritance - Package and Interfaces: Packages, Packages and me	
Importing Packages, Interfaces, Static Methods in an Interface – Exception Handlin	
Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and ca	0 1
catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Excep	_
cateri ciadses, ivested il y Statements, tinow, tinows, iniany, sava s Bunt in Excep	tions.
List of Exercises:	
1. Develop a Java application to implement currency converter (Dollar to INR, EU	JRO to INR
Yen to INR and vice versa), distance converter (meter to KM, miles to KM and vice	
time converter (hours to minutes, seconds and vice versa) using packages.	,,
2. Develop a Java application with Employee class with Emp_name, Emp_id, Add	dress,
Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Profes	
Associate Professor and Professor from employee class. Add Basic Pay (BP) as the	

Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary. 3. Design a Java interface for ADT Stack. Implement this interface using array and built-in classes. Provide necessary exception handling in both the implementations.

4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains the methods print Area () that prints the area of the given shape and Numberofsides() that prints the number of sides of the given shape.

5. Write a Java program to apply built-in and user defined exceptions.

UNIT III MULTITHREADING, I/O AND GENERIC PROGRAMMING	15
Multithreaded Programming: Creating a Thread, Thread Priorities, Synchronization, Inter	thread
Communication – I/O: I/O Basics, Reading Console Input, Writing Console Output, Readi	ng and
Writing Files – Generics: Introduction, Generic class, Bounded Types, Generic Methods, G	0
Interfaces, Generic Restrictions.	
interfaces, Generic Restretions.	
List of Exercises:	
1.Write a Java program to read and copy the content of one file to other by handling all file	le
related exceptions.	
UNIT IV STRING HANDLING AND COLLECTIONS	15
Lambda Expressions - String Handling – Collections: The Collection Interfaces, The Coll	
Classes – Iterator – Map - Regular Expression Processing.	cettor
Chasses horacor map regular Expression Processing.	
List of Exercises:	
1.String Manipulation:	
a. Reversing a set of words and count the frequency of each letter in the string.	
b. Pattern Recognition - Find the number of patterns of form 1[0]1 where [0] represents a	anv
number of zeroes (minimum requirement is one 0) there should not be any other chara	2
except 0 in the [0] sequence in a given binary string.	
c. Remove all the occurrences of string S2 in string S1 and print the remaining.	
d. Find the longest repeating sequence in a string	• .1
e. Print the number of unique string values that can be formed by rearranging the letters i	in the
string S.	
2. Write a Java program that correctly implements producer consumer problem using the	;
concept of inter thread communication.	
3. Collections:	
a. Write a program to perform string operations using ArrayList. Write functions for the	
following	
i. Append - add at end	
ii. Insert – add at particular index	
iii. Search	
iv. List all string starts with given letter	
b. Find the frequency of words in a given text.	
UNIT V JDBC CONNECTIVITY	15
JDBC – DataSource, Configurations, Connection, Connection Pools, Driver Types, Resul	tSet,
Prepared Statement, Named Parameter, Embedded SQL (Insert, Update, Delete, Join, univ	on
etc), ResultSet Navigation, Connection Close and Clean up.	
List of Exercises:	
Mini Project (using JDBC)	
TOTAL: 75 PER	RIOD
OUTCOMES:	
Upon completion of the course, the students will be able to:	
CO1: Understand the object oriented programming concepts and fundamentals of Java.	
CO2: Develop Java programs with the packages, interfaces and exceptions.	
CO3: Build Java applications with I/O streams, threads and generics programming.	
CO4: Apply strings and collections in developing applications.	
CO5: Implement the concepts of JDBC.	
• •	
TEXTROOKS.	

TEXTBOOKS:

 Herbert Schildt, "Java: The Complete Reference", 11th Edition, McGraw Hill Education, 2019.

REFERENCES:

- 1. Cay S. Horstmann, Gary Cornell, "Core Java Volume I Fundamentals", 11th Edition, Prentice Hall, 2019.
- 2. Paul Deitel, Harvey Deitel, Java SE 8 for programmers, 3rd Edition, Pearson, 2015.
- 3. Steven Holzner, Java 2 Black book, Dream tech press, 2011.
- 4. Timothy Budd, Understanding Object-oriented programming with Java, Third Edition, Pearson Education, 2008.
- 5. https://infyspringboard.onwingspan.com/web/en/app/ toc/lex_29959473947367270000_shared/overview

22IT2	01	DATABASE MANAGEMENT SYSTEM	L	Τ	P	С	
22112	UI		3	0	2	4	

OBJECTIVES:

The Course will enable learners to:

- To understand the basic concepts of Data modeling and Database Systems.
- To understand SQL and effective relational database design concepts.
- To learn relational algebra, calculus and normalization.
- To know the fundamental concepts of transaction processing, concurrency control techniques, recovery procedure and data storage techniques.
- To understand query processing, efficient data querying and advanced databases.

UNIT I DATABASE CONCEPTS

Concept of Database and Overview of DBMS - Characteristics of databases - Data Models, Schemas and Instances - Three-Schema Architecture - Database Languages and Interfaces -Introductions to data models types - ER Model- ER Diagrams - Enhanced ER Model - reducing ER to table Applications: ER model of University Database Application – Relational Database Design by ER- and EER-to-Relational Mapping.

15

15

15

List of Exercises:

1. Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements

UNIT II STRUCTURED QUERY LANGUAGE

SQL Data Definition and Data Types – Constraints – Queries – INSERT, UPDATE, and DELETE in SQL - Views - Integrity Procedures, Functions, Cursor and Triggers - Embedded SQL - Dynamic SQL.

List of Exercises:

- 1. Database Querying Simple queries, Nested queries, Sub queries and Joins
- 2. Views, Sequences, Synonyms

3. Database Programming: Implicit and Explicit Cursors

|--|

Relational Algebra – Operations - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations.

Relational Database Design - Functional Dependency – Normalization (1NF, 2NF 3NF and BCNF) – Multivalued Dependency and 4NF – Joint Dependencies and 5NF - De-normalization.

List of Exercises:

1. Procedures and Functions

2. Triggers

UNIT IV	TRANSACTIONS, CONCURRENCY CONTROL AND DATA	
UNITIV	STORAGE	

Transaction Concepts – ACID Properties – Schedules based on Recoverability, Serializability – Concurrency Control – Need for Concurrency – Locking Protocols – Two Phase Locking – Transaction Recovery – Concepts – Deferred Update – Immediate Update.

Organization of Records in Files – Unordered, Ordered – Hashing Techniques – RAID – Ordered Indexes – Multilevel Indexes - B+ tree Index Files – B tree Index Files.

List of Exercises:

1. Exception Handling

Database Design using ER modeling, normalization and Implementation for any application
 Database Connectivity with Front End Tools

UNIT V QUERY OPTIMIZATION AND ADVANCED DATABASES

Query Processing Overview – Algorithms for SELECT and JOIN operations – Query optimization using Heuristics.

Distributed Database Concepts – Design – Concurrency Control and Recovery – NOSQL Systems – Document-Based NOSQL Systems and MongoDB.

List of Exercises:

1. Case Study using real life database applications anyone from the following list

- a) Inventory Management for a EMart Grocery Shop
- b) Society Financial Management
- c) Cop Friendly App Eseva
- d) Property Management eMall
- e) Star Small and Medium Banking and Finance

• Build Entity Model diagram. The diagram should align with the business and functional goals stated in the application.

- Apply Normalization rules in designing the tables in scope.
- Prepared applicable views, triggers (for auditing purposes), functions for enabling enterprise grade features.

• Build PL SQL / Stored Procedures for Complex Functionalities, ex EOD Batch Processing for calculating the EMI for Gold Loan for each eligible Customer.

• Ability to showcase ACID Properties with sample queries with appropriate settings

TOTAL: 75 PERIODS

15

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Map ER model to Relational model to perform database design effectively.

CO2: Implement SQL and effective relational database design concepts.

CO3: Apply relational algebra, calculus and normalization techniques in database design.

CO4: Understand the concepts of transaction processing, concurrency control, recovery procedure and data storage techniques.

CO5: Apply query optimization techniques and understand advanced databases.

TEXTBOOKS:

- 1. Elmasri R. and S. Navathe, "Fundamentals of Database Systems", Pearson Education, 7th Edition, 2016.
- 2. Abraham Silberschatz, Henry F.Korth, "Database System Concepts", Tata McGraw Hill , 7th Edition, 2021.

REFERENCES:

- 1. Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education, 2013.Raghu Ramakrishnan, Gehrke "Database Management Systems", MCGraw Hill, 3rd Edition 2014.
- 2. Plunkett T., B. Macdonald, "Oracle Big Data Hand Book", McGraw Hill, First Edition, 2013
- 3. Gupta G K , "Database Management Systems" , Tata McGraw Hill Education Private Limited, New Delhi, 2011.
- 4. C. J. Date, A.Kannan, S. Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2015.
- 5. Maqsood Alam, Aalok Muley, Chaitanya Kadaru, Ashok Joshi, Oracle NoSQL Database: Real-Time Big Data Management for the Enterprise, McGraw Hill Professional, 2013.
- 6. Thomas Connolly, Carolyn Begg, "Database Systems: A Practical Approach to Design, Implementation and Management", Pearson, 6th Edition, 2015.

7. Database Management System Part – 1

https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456_shared/overview

- 8. Database Management System Part 2
 - https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0127673005629194 241_shared/overview
- 9. Online Resources:

https://infyspringboard.onwingspan.com/web/en/page/home

22GE211	PRODUCT DEVELOPMENT LAB - II	L	Т	Р	С
22GE211	(Common to All Branches)	0	0	2	1

The students may be grouped into a batch of strength 3 or 4 to work under a project supervisor. The student batches should study the device/system/component and will do literature review to develop prototype idea. Further at the end of the semester they will make a final presentation to exhibit the conceptual design skills and the process to develop a product.

OBJECTIVES:

The Course will enable learners to:

- Use the innovative design methodology to articulate the product concepts.
- Summarize the requisite Engineering Principles for transforming concepts into products.
- Conduct basic tests to extract the qualitative and quantitative performance factors.

List of Exercise/Experiments

- 1. Study of Basic Engineering Design Concepts.
- 2. Conduct a literature survey on the implementation of the design concepts.
- 3. Prepare the design concepts for an identified literature gap.
- 4. Present the Product Idea Presentation Phase II.

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Understand the working and capacity of various engineering systems.

CO2: Infer the outcomes in the product development process.

CO3: Perform basic engineering and material characterization tests.

CO4: Demonstrate the ability to provide conceptual design strategies for a product.

CO5: Implement the Science, Engineering, Technology and Mathematics (STEM) for product design.

TOTAL: 30 PERIODS

	ENVIRONMENTAL SCIENCE AND	L	Τ	P	С
22CH102	SUSTAINABILITY (Non Credit)	2	0	•	0
	(Non Credit)	2	0	0	0
 The Course To gain k To ident managem To under To recogn To comprise UNIT I Definition, senatural resouring sources - Sol 	CTIVES: will enable learners to: nowledge of the environment and various natural resource ify the Scientific and Technological solutions to po- nent. stand the significance of the conservation of biodiversity. hize the needs and benefits of sustainability and its manage rehend the effects of human population on the environment NATURAL RESOURCES cope and importance of environment – need for public a rces - Types - Forest resources: Use and over-exploitant of resources: effects of modern agriculture, organic far ar, Wind, Geothermal, Tidal, OTE and Biomass. y -Tree plantation POLLUTION AND WASTE MANAGEMENT	llution gemen nt. aware tion,	t. ness. defor	Intre	7 oduction to ion and its
	POLLUTION AND WASTE MANAGEMENT Definition –causes, effects and control measures of (a)	Air	polli	ition	,
pollution (c) holocaust -Re Waste mana	Soil pollution (d) Noise pollution (e) Nuclear hazards ole of an individual in prevention of pollution –Case studi gement- Municipal solid wastes, e- waste, plastic waste. - Solid waste management of the institution	s - n	-		
UNIT III	BIODIVERSITY AND ITS CONSERVATION		t		6
biodiversity - species of Inc Field study -	types – values of biodiversity, India as a mega-divers - threats to biodiversity – endangered and endemic specie dia – conservation of biodiversity: In-situ and ex-situ meth - Biodiversity of the institution	es, ext			vulnerable
	SUSTAINABILITY AND MANAGEMENT		<u> </u>	1	5
Concept of Ca solutions.	 concept, needs and challenges-Circular economy -Sustai arbon footprint, Environmental Impact Assessment, Clean Carbon footprint of the institution 			-	
UNIT V	HUMAN POPULATION	0			5
and human h environment	 Population growth, variation among nations, population ealth – endemic/epidemic/pandemic– Role of information and human health. Pandemics of 21st century 	tech	nolog	y in	
	OMES.	ТО	TAL	: 30	PERIODS
Upon compl CO1: Investi CO2: Identif CO3: Adapt CO4: Recog	OMES: etion of the course, the students will be able to: gate and use conservational practices to protect natural re y the causes of pollutants and illustrate suitable methods f the values of biodiversity and its conservation methods. nize suitable sustainable development practices and apply the impacts of human population and suggest suitable sol	for po it in o	llutic day-t		

TEXTBOOKS:

- 1. Anubha Kaushik and C.P. Kaushik, "Perspectives in environmental studies", New Age International Publishers, 2nd edition, 2021.
- 2. Benny Joseph, Environmental Science and Engineering, Tata McGraw-Hill, New Delhi, 2017.
- 3. Gilbert M.Masters, Introduction to Environmental Engineering and Science, 3rd edition, Pearson Education, 2014.
- 4. Erach Bharuch, Textbook of Environmental Studies for Undergraduate Courses, Third Edition, Universities Press(I) Pvt. Ltd., Hyderabad, 2021.

REFERENCES:

- 1. William P.Cunningham& Mary Ann Cunningham Environmental Science: A Global Concern, McGraw Hill, 14th edition, 2017.
- 2. Rajagopalan, R, Environmental Studies-From Crisis to Cure, Oxford University Press, 2015.
- 3. G. Tyler Miller and Scott E. Spoolman, —Environmental Science, Cengage Learning India Pvt, Ltd., Delhi, 2014.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall, 2012.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning, 2015.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006 and subsequent amendments, 2022

22 (F 201	TAMILS AND TECHNOLOGY	L	Т	P	С
22GE201	(Common to All Branches)	1	0	0	1
OD IECTIVES.				· · · ·	

OBJECTIVES:

Ш

The Course will enable learners to:

- Recognize the historical significance of weaving and pottery technologies inancient Tamil civilization.
- Highlight the concepts of design and construction technology during the Sangamage.

3

- Provide an overview of manufacturing technology and its role in Tamil society.
- Illustrate the agricultural and irrigation techniques employed in ancient Tamil society.
- Promote scientific Tamil and Tamil computing.

UNIT I WEAVING AND CERAMIC TECHNOLOGY

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II	DESIGN AND CONSTRUCTION TECHNOLOGY	3				
Designing and Structural construction House & Designs in household materials duringSangam						
Age - Buildin	g materials and Hero stones of Sangam age – Details of Stage					
Constructions	in Silappathikaram - Sculptures and Temples of Mamallapuram - G	reat				
Temples of C	Temples of Cholas and other worship places - Temples of Nayaka Period - Type study(Madurai					
Meenakshi Te	emple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo -					
Saracenic arch	itecture at Madras during British Period.					
UNIT	MANUFACTURING TECHNOLOGY	3				

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold-Coins as source of history - Minting of Coins – Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram. UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY 3 Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. **SCIENTIFIC TAMIL & TAMIL COMPUTING** UNIT V Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries Sorkuvai Project. **TOTAL:15PERIODS OUTCOMES:** Upon completion of the course, the students will be able to: **CO1:**Identify the role of weaving and ceramic technology in ancient Tamil Culture. **CO2:**Assess the design and construction technology ideas in the current Tamil society. **CO3:**Identify the different types of manufacturing technology used in Tamil society andtheir significance. **CO4:**Classify agricultural and irrigation technologies in ancient Tamil society and itscurrent relevance. **CO5**:Discuss the fundamentals of scientific Tamil and Tamil computing. TEXTBOOKS& REFERENCE BOOKS: தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிளளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்). 1. கணினித் தமிழ் – முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்). 2. கீழடி – வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு) 3. பொருநை – ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) 4 5. Social Life of Tamils (Dr.K.K. Pillay) A joint publication of TNTB & ESC and RMRL - (in print) 6. Social Life of the Tamils - The Classical Period (Dr.S. Singaravelu) (Published by: International Institute of Tamil Studies. 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D.Thirunavukkarasu) (Published by: International Institute of Tamil Studies). 8. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.) 9. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Publishedby: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author) 11. Porunai Civilization (Jointly Published by: Department of Archaeology & TamilNadu Text Book and Educational Services Corporation, Tamil Nadu) 12. Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) -**Reference Book**

22MA301	DISCRETE MATHEMATICS (Common to CSE,IT & AIML)	L T 3 1	P 0	C 4
OBJF	ECTIVES:	5 1	0	4
	is designed to:			
	escribe the arguments using connectives and rules of inference.			
	roduce the basic concept of counting and generating functions.			
	fine the graphs and it's models.			
• Un	iderstand the concept of group theory, lattices and Boolean algebra.			
UNIT I	LOGIC AND PROOFS			15
	al logic - Propositional equivalences - Predicates and quantifiers - Ne nference - Introduction to proofs - Proof methods and strategy.	sted qu	ıantif	iers
UNIT II	COMBINATORICS			15
pigeonhole recurrence applications		Solvi	ng lir	near
UNIT III	GRAPHS			15
-	graph models - Graph terminology and special types of graphs - Matrix nd graph isomorphism - Connectivity - Euler and Hamilton paths.	x repre	senta	tion
UNIT IV	ALGEBRAIC STRUCTURES			15
Fields.	ogroup and cosets - Lagrange's theorem - Definitions and example	S OF R	ings	and
Fields. UNIT V Partial orde	LATTICES AND BOOLEAN ALGEBRA ring - Posets - Lattices as posets - Properties of lattices - Lattices as alg	gebraic	syste	15
Fields. UNIT V Partial orde	LATTICES AND BOOLEAN ALGEBRA	gebraic ean alg	systeebra.	<u>15</u> ems
Fields. UNIT V Partial orde - Sub lattice OUT Upon con CO1: Va CO2: So CO3: De CO4: Ide	LATTICES AND BOOLEAN ALGEBRA ring - Posets - Lattices as posets - Properties of lattices - Lattices as alg es - Direct product and homomorphism - Some special lattices - Boole	gebraic ean alg	systeebra.	15 ems
Fields. UNIT V Partial orde - Sub lattice OUT Upon con CO1: Va CO2: So CO3: De CO4: Ide	LATTICES AND BOOLEAN ALGEBRA ring - Posets - Lattices as posets - Properties of lattices - Lattices as alges - Direct product and homomorphism - Some special lattices - Boole TOTAL COMES: mpletion of the course, the students will be able to: alidate the arguments using connectives and rule of inference. olve linear recurrence relations. etermine Euler's path and Hamilton paths. entify algebraic structures of groups, rings, and fields. erpret lattices as algebraic structures.	gebraic ean alg	systeebra.	15 ems
Fields. UNIT V Partial orde - Sub lattice OUTO Upon con CO1: Va CO2: So CO3: De CO4: Ide CO5: Int TEXTBOO 1. Ros Hill 2. Tren	LATTICES AND BOOLEAN ALGEBRA ring - Posets - Lattices as posets - Properties of lattices - Lattices as alges - Direct product and homomorphism - Some special lattices - Boole TOTAL COMES: mpletion of the course, the students will be able to: alidate the arguments using connectives and rule of inference. olve linear recurrence relations. etermine Euler's path and Hamilton paths. entify algebraic structures of groups, rings, and fields. erpret lattices as algebraic structures.	gebraic ean alg : 75 PI ata Mc	E syste ebra. ERIC Graw	15 ems DDS
Fields. UNIT V Partial orde - Sub lattice OUT Upon con CO1: Va CO2: So CO3: De CO4: Ide CO5: Int TEXTBOO 1. Ros Hill 2. Tren Con	LATTICES AND BOOLEAN ALGEBRA ering - Posets - Lattices as posets - Properties of lattices - Lattices as alges - Direct product and homomorphism - Some special lattices - Boole East - Direct product and homomorphism - Some special lattices - Boole TOTAL COMES: mpletion of the course, the students will be able to: alidate the arguments using connectives and rule of inference. olve linear recurrence relations. etermine Euler's path and Hamilton paths. entify algebraic structures of groups, rings, and fields. erpret lattices as algebraic structures. DKS: en, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tapub. Co. Ltd., New Delhi, Special Indian Edition, 2021. mblay, J.P. and Manohar.R, "Discrete Mathematical Structures with A	gebraic ean alg : 75 PI ata Mc	E syste ebra. ERIC Graw	15 ems DDS
Fields. UNIT V Partial orde - Sub lattice OUT Upon con CO1: Va CO2: So CO3: De CO4: Ide CO5: Int TEXTBOO 1. Ros Hill 2. Tren Con REFE 1. Grin	LATTICES AND BOOLEAN ALGEBRA aring - Posets - Lattices as posets - Properties of lattices - Lattices as alges - Direct product and homomorphism - Some special lattices - Boole TOTAL COMES: mpletion of the course, the students will be able to: alidate the arguments using connectives and rule of inference. olve linear recurrence relations. etermine Euler's path and Hamilton paths. entify algebraic structures of groups, rings, and fields. erpret lattices as algebraic structures. DKS: en, K.H., "Discrete Mathematics and its Applications", 8th Edition, Tapub. Co. Ltd., New Delhi, Special Indian Edition, 2021. mblay, J.P. and Manohar.R, " Discrete Mathematical Structures with A nputer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Re ERENCES: maldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Interview.	gebraic ean alg : 75 PI ata Mc Applica	Graw	15 ems DDS
Fields. UNIT V Partial orde - Sub lattice OUT Upon con CO1: Va CO2: So CO3: De CO4: Ide CO4: Ide CO5: Int TEXTBOO 1. Ros Hill 2. Tren Con REFE 1. Grin Edit 2. Lips	LATTICES AND BOOLEAN ALGEBRA sring - Posets - Lattices as posets - Properties of lattices - Lattices as alges - Direct product and homomorphism - Some special lattices - Boole tes - Direct product and homomorphism - Some special lattices - Boole TOTAL COMES: mpletion of the course, the students will be able to: alidate the arguments using connectives and rule of inference. olve linear recurrence relations. etermine Euler's path and Hamilton paths. entify algebraic structures of groups, rings, and fields. erpret lattices as algebraic structures. DKS: en, K.H., "Discrete Mathematics and its Applications", 8th Edition, To Pub. Co. Ltd., New Delhi, Special Indian Edition, 2021. mblay, J.P. and Manohar.R, " Discrete Mathematical Structures with A nputer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Re ERENCES:	gebraic ean alg : 75 Pl ata Mc Applica eprint, 2	Graw ations 2017.	15 ems DDS

 OBJECTIVES: The Course will enable learners to: Explain the basic concepts of operating systems and process. Discuss threads and analyse various CPU scheduling algorithms. Describe the concept of process synchronization and deadlocks. Analyse various memory management schemes. Describe I/O management and file systems. 	22CS304	OPERATING SYSTEMS (Common to CSE, IT and AIML)	<u>L</u> 2	Т 0	P 2	$\frac{C}{3}$
The Course will enable learners to: • Explain the basic concepts of operating systems and process. • Discuss threads and analyse various CPU scheduling algorithms. • Describe the concept of process synchronization and deadlocks. • Analyse various memory management schemes. • Describe I/O management and file systems. UNT1 INTRODUCTION TO OPERATING SYSTEMS AND PROCESSES 6+6 Introduction: Computer system organization - architecture – Resource management - Protection and Security – Virtualization - Operating System Structures: Services - User and Operating-System and Implementation - Building and Booting an Operating System S recess Concept - Process Scheduling - Operations on Processe - Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: 1 1. Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc 2 2. Programs using Shell Programming. 3. Implementation of Unix System Calls. 4. Implementation of Unix System Calls. 4. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process. 0. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process.	OBJECTIVI					
 Explain the basic concepts of operating systems and process. Discuss threads and analyse various CPU scheduling algorithms. Describe the concept of process synchronization and deadlocks. Analyse various memory management schemes. Describe I/O management and file systems. UNITI INTRODUCTION TO OPERATING SYSTEMS AND PROCESSES [4+6] Introduction: Computer system organization - architecture - Resource management - Protection and Security – Virtualization - Operating System Structures: Services - User and Operating-System Interface - System Calls - System Services - Design and Implementation - Building and Booting an Operating System – Processe Concept - Process Scheduling - Operations on Processe - Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc Programs using Shell Programming. Implementation of Unix System Calls. Implementation of IPC using message queue Get the input data (integer value) from a process called sender Use Message Queue to transfer this data from sender to receiver process The receiver does the prime number checking on the received data Communicate the verified/status result from receiver to sender process. Invit 1 I THREADS AND CPU SCHEDULING [4+6] Dise dessage Queue to transfer this data from sender to receiver process. The receiver does the prime number checking on the received data Communicate the verified/status result from receiver to sender process. Invit 1 I THREADS AND CPU SCHEDULING [4+6] Therading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling Criteria - Scheduli						
 Discuss threads and analyse various CPU scheduling algorithms. Describe the concept of process synchronization and deadlocks. Analyse various memory management schemes. Describe I/O management and file systems. UNIT I INTRODUCTION TO OPERATING SYSTEMS AND PROCESSES [4+6] Introduction: Computer system organization - architecture – Resource management - Protection and Security – Virtualization - Operating System Structures: Services - User and Operating-System Interface - System Calls - System Services - Design and Implementation - Building and Booting an Operating System – Processes: Process Concept - Process Scheduling - Operations on Processes - Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: 1. Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc 2. Programs using Shell Programming. 3. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes, Don't do it as a single process UNIT I THREADS AND CPU SCHEDULING	•					
Describe the concept of process synchronization and deadlocks. Analyse various memory management schemes. Describe I/O management and file systems. UNIT I INTRODUCTION TO OPERATING SYSTEMS AND PROCESSES 6+6 Introduction: Computer system organization - architecture – Resource management - Protection and Security – Virtualization - Operating System Structures: Services - User and Operating-System Interface - System Calls - System Services - Design and Implementation - Building and Booting an Operating System – Processes: Process Concept - Process Scheduling - Operations on Processe Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: 1. Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc 2. Programs using Shell Programming. 3. Implementation of UPU using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT I THREADS AND CPU SCHEDULING for the alternosity - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multithreading Models - Thread a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread function and program program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms.	•		IS.			
 Analyse various memory management schemes. Describe I/O management and file systems. UNTI INTRODUCTION TO OPERATING SYSTEMS AND PROCESSES [6+6] Introduction: Computer system organization - architecture – Resource management - Protection and Security – Virtualization - Operating System Structures: Services - User and Operating-System Interface - System Calls - System Services - Design and Implementation - Building and Booting at Operating System – Processes Concept - Process Scheduling - Operations on Processe: - Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc Programs using Shell Programming. Implementation of Unix System Calls. Implementation of IPC using message queue Get the input data (integer value) from a process called sender Use Message Queue to transfer this data from sender to receiver process C. The receiver does the prime number checking on the received data Communicate the verified/status result from receiver to sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT I THEADS AND CPU SCHEDULING it as a single process UNIT II THREADS AND CPU SCHEDULING it as a single process. Scheduling Algorithms - Thread Scheduling - Multithreading Models - Thread Scheduling - Scheduling - Real-Time CPU Scheduling - Scheduling - Real-Time CPU Scheduling - Cate a thread in a program and called Parent thread, this parent thread creates anothe thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 	•					
 Describe I/O management and file systems. UNTT I [NTRODUCTION TO OPERATING SYSTEMS AND PROCESSES] 6+6 Introduction: Computer system organization - architecture - Resource management - Protection and Security - Virtualization - Operating System Structures: Services - User and Operating.System Interface - System Calls - System Services - Design and Implementation - Building and Booting an Operating System - Processes: Process Concept - Process Scheduling - Operations on Processes - Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc Programs using Shell Programming. Implementation of UR using message queue a Get the input data (integer value) from a process called sender Use Message Queue to transfer this data from sender to receiver process The receiver does the prime number checking on the received data Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNTTI [THREADS AND CPU SCHEDULING 6+6 Threading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling. Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling Write a program to implement the following actions using pthreads Create a thread in a program and called Parent thread, this parent thread creates anothe thread (integed in program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your	•		•			
UNIT I INTRODUCTION TO OPERATING SYSTEMS AND PROCESSES 6+6 Introduction: Computer system organization - architecture – Resource management - Protection and Interface - System Calls - System Services - Design and Implementation - Building and Booting at Operating System – Processes: Process Concept - Process Scheduling - Operations on Processe - Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: 1. Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc 2. Programs using Shell Programming. 3. Implementation of Unix System Calls. 4. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process. Multi-Processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling - Scheduling - Scheduling - Nulti-Processor Scheduling - Real-Time CPU Scheduling - Real-Time CPU Scheduling 6+6 Thread & Concurrency: Overview - Multicore Programming - Multi-Processor Scheduling - Real-Time CPU Scheduling - Real-Time CPU Scheduling - Real-Time CPU Scheduling 6+6 Therade a thread in a program and called Parent thread, this parent thread creat	•					
 Security – Virtualization - Operating System Structures: Services - User and Operating-System Interface - System Calls - System Services - Design and Implementation - Building and Booting an Operating System – Processes: Process Concept - Process Scheduling - Operations on Processes - Inter process Communication - IPC in Shared-Memory Systems - IPC in Message-Passing Systems List of Exercise/Experiments: Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc Programs using Shell Programming. Implementation of Unix System Calls. Implementation of IPC using message queue Get the input data (integer value) from a process called sender Use Message Queue to transfer this data from sender to receiver process The receiver does the prime number checking on the received data Communicate the verified/status result from receiver to sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Ched Exercise/Experiments: Write a program to implement the following actions using pthreads Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread in a program and called Parent thread, this parent thread waits till the child thread finishes Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 	UNIT I		OCE	SSES	5	6+6
 List of Exercise/Experiments: Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc Programs using Shell Programming. Implementation of Unix System Calls. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threading Issues - CPU Scheduling: Basic Concepts – Scheduling: Criteria - Scheduling - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling: Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: Write a program to implement the following actions using pthreads Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 	Security – V Interface - Sy Operating Sy – Inter proce	rtualization - Operating System Structures: Services - User a stem Calls - System Services - Design and Implementation - Bu stem – Processes: Process Concept - Process Scheduling - Op	and C iildin eratio	Dperating and ons of the other other of the other	ting-S Boot n Pro	ystem ing ar cesses
 Basic Unix file system commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr,man, grep, sed, etc Programs using Shell Programming. Implementation of Unix System Calls. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 		ENGINEERING COLLEGE				
grep, sed, etc 2. Programs using Shell Programming. 3. Implementation of Unix System Calls. 4. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms.		-				
 2. Programs using Shell Programming. 3. Implementation of Unix System Calls. 4. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING		· · · · · · · · · · · · · · · · · · ·	nv, m	ore, l	pr,ma	n,
 3. Implementation of Unix System Calls. 4. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling: Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms. 	grep, sed,	etc				
 4. Implementation of IPC using message queue a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling: Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: Notrie a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 	-					
 a. Get the input data (integer value) from a process called sender b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms.	1					
 b. Use Message Queue to transfer this data from sender to receiver process c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts - Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: Write a program to implement the following actions using pthreads Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes Create a thread in the main program, this program passes the 'count' as arguments to that thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms.						
 c. The receiver does the prime number checking on the received data d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms. 	a. Get t	ne input data (integer value) from a process called sender				
 d. Communicate the verified/status result from receiver to sender process, thisstatus should be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to that thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms. 	b. Use I	Aessage Queue to transfer this data from sender to receiver proc	ess			
be displayed in the Sender process. Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms.	c. The r	eceiver does the prime number checking on the received data				
Note: Simultaneously execute two or more processes. Don't do it as a single process UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms.	d. Com	municate the verified/status result from receiver to sender proce	ess, tl	nissta	tus sh	ould
UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms.	be displ	ayed in the Sender process.				
UNIT II THREADS AND CPU SCHEDULING 6+6 Threads & Concurrency: Overview - Multicore Programming - Multithreading Models - Thread Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms.	Note: Sin	ultaneously execute two or more processes. Don't do it as a sin	gle pi	roces	S	
 Libraries - Implicit Threading - Threading Issues - CPU Scheduling: Basic Concepts – Scheduling Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: Write a program to implement the following actions using pthreads Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 	UNIT II	THREADS AND CPU SCHEDULING				6+6
 Criteria - Scheduling Algorithms - Thread Scheduling - Multi-Processor Scheduling - Real-Time CPU Scheduling List of Exercise/Experiments: Write a program to implement the following actions using pthreads Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 	Threads & C	oncurrency: Overview - Multicore Programming - Multithread	ding	Mode	els - T	hread
 CPU Scheduling List of Exercise/Experiments: Write a program to implement the following actions using pthreads Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 	Libraries - In	plicit Threading - Threading Issues - CPU Scheduling: Basic C	Conce	pts –	Sche	duling
 List of Exercise/Experiments: 1. Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms. 	Criteria - Sch	eduling Algorithms - Thread Scheduling - Multi-Processor Sc	hedu	ling -	Real	-Time
 Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 	CPU Schedul	ing				
 Write a program to implement the following actions using pthreads a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. Write C programs to implement the various CPU Scheduling Algorithms. 	I : . 4 . 6 E					
 a. Create a thread in a program and called Parent thread, this parent thread creates anothe thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms. 						
 thread (Child thread) to print out the numbers from 1 to 20. The Parent thread waits till the child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms. 			_			
 child thread finishes b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times. 2. Write C programs to implement the various CPU Scheduling Algorithms. 		1 0				
b. Create a thread in the main program, this program passes the 'count' as arguments to tha thread function and this created thread function has to print your name 'count' times.2. Write C programs to implement the various CPU Scheduling Algorithms.		· •	nt thr	ead v	vaits t	ill th
thread function and this created thread function has to print your name 'count' times.Write C programs to implement the various CPU Scheduling Algorithms.						
2. Write C programs to implement the various CPU Scheduling Algorithms.						to tha
UNIT III PROCESS SYNCHRONISATION AND DEADLOCKS 6+6				' time	es.	
	UNIT III	PROCESS SYNCHRONISATION AND DEADLOCKS				6+6

Process Synchronization: The critical-section problem – Peterson's Solution, Synchronization hardware, Mutex locks, Semaphores, monitors - Classic problems of synchronization: Bounded Buffer Problem - Reader's & Writer Problem, Dinning Philosopher Problem. Deadlock: System model - Deadlock characterization, Methods for handling deadlocks - Deadlock prevention - Deadlock avoidance - Deadlock detection - Recovery from deadlock.

List of Exercise/Experiments:

1. Process Synchronization using Semaphores. A shared data has to be accessed by two categories of processes namely A and B. Satisfy the following constraints to access the data without any data loss.

- a. When a process A1 is accessing the database another process of the same category is permitted.
- b. When a process B1 is accessing the database neither process A1 nor another 74 processB2 is permitted.
- c. When a process A1 is accessing the database process B1 should not be allowed toaccess the database. Write appropriate code for both A and B satisfying all the above constraints using semaphores.

Note: The time-stamp for accessing is approximately 10 sec.

2. Bankers Algorithm for Deadlock Avoidance

UNIT IV | MEMORY MANAGEMENT

Memory Management: Contiguous Memory Allocation - Paging - Structure of the Page Table – Swapping - Virtual Memory: Demand Paging – Copy-on write – Page Replacement – Allocation of frames – Thrashing – Memory Compression

List of Exercise/Experiments:

- Analysis and Simulation of Memory Allocation and Management Techniques

 First Fit ii. Best Fit iii. Worst Fit
- 2. Implementation of Page Replacement Techniques
 - i. FIFO ii. LRU iii. Optimal page replacement

UNIT V STORAGE MANAGEMENT

Mass Storage Structure: Overview of Mass Storage Structure- HDD scheduling – Swap Space Management, I/O systems: I/O Hardware, Application I/O interface, Kernel I/O Subsystem, File System Interface: File Concept – Access Methods – Directory Structure

– Protection, File-System Implementation: File-System Structure- File-System Operations - Directory Implementation - Allocation Methods - Free-Space Management,

上出出门

- Case Study-Linux

List of Exercise/Experiments:

- 1. Simulation of File Allocation Techniques
 - i. Sequential ii. Linked list iii. indexed
- 2. Implementation of File Organization Strategies

Single level directory ii. Two level directory iii. Hierarchical level directory

OUTCOMES:

TOTAL: 60 PERIODS

6+6

6+6

Upon completion of the course, the students will be able to:

CO1:Implement the basic concepts of operating systems and process.

CO2:Analyse various CPU scheduling algorithms and thread mechanism.

CO3:Implement the concepts of process synchronization and deadlocks.

CO4:Design various memory management schemes to given situation.

CO5:Implement various I/O and file management techniques.

TEXTBOOKS:

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating SystemConcepts" II, 10th Edition, John Wiley and Sons Inc., 2018.
- Andrew S Tanenbaum, "Modern Operating Systems", Pearson, 5th Edition, 2022 New Delhi.

REFERENCES:

- 1. William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2018.
- 2. Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016.

22CS307	ADVANCED JAVA	L	Т	P	С			
2200507	PROGRAMMING	3	0	2	4			
	(Common to CSE, IT,ECE and AIML)							
OBJECTIV	ES:							
	urse will enable learners to:							
 Use the functionalities of Collections and IO Streams Use the functionalities of Java Stream API and unit testing framework usingJunits. Provide a framework to map object-oriented domain models to relational databases for web applications using ORM Hibernate tool. Provide infrastructure support using Spring Framework. Implement Model – View – Controller design pattern using Spring MVC. 								
UNIT I	COLLECTIONS AND IO STREAMS			9	9+6			
PriorityQueue -StringToken of Streams - 7 - Random A Currency - W - Locating Da List of Exerci- 1. Write the co 2. Write adding	a Java program to create an ArrayList of integers and add element ntents of the ArrayList. a Java program to create a HashSet of strings and perform various oper g, removing, and checking the presence of elements. am to copy the contents of one file to another file using FileInputStreat	- Stro -Nu and ts to ation	eam umbe For it.I	s T ers, ma Disp	ypes and tting			
UNIT II	STREAM API AND JUNIT			9	9+6			

Count -Parallel Streams - Declarative/Functional Style Approach - Stream Pipeline – Iterating with stream - Max, Min & Comparators - Distinct and Collectors.toSet() - Filteringand Transformations - Find Any Vs Find First - Reduce and Flatmap - Joining Strings Implementation of Stream in API". Junit - Introduction to JUnit, JUnit with Eclipse, Assert method, Annotations, Parameterized tests, Test suite, Test runner.

List of Exercises

- 1. Write a Java program to filter out the even numbers from a list of integers using theStream API.
- 2. Create a program that uses the Stream API to find the average of a list of floating-point numbers.
- **3**. Implement a Java program that uses the Stream API to count the number of occurrences of a specific word in a given text file.
- 4. Write a JUnit test case to check if a given string is palindrome or not.
- 5. Create a JUnit test case to verify the correctness of a method that calculates the

factorial of a given number.

Implement a JUnit test case to ensure that a specific exception is thrown when invalidinput is provided to a method.

9+6

UNIT III HIBERNATE FRAMEWORK Hibernate Framework - Hibernate - Mapping Types - Hibernate Inheritance Mapping

- Hibernate - Mapping Types - Hibernate Inheritance Mapping -Collections Mappings - Association mapping - HCQL (Hibernate Criteria Query Language) - Hibernate Query Language (HQL) - Caching in Hibernate - Log4j in Hibernate.

List of Exercises

- 1. Write a Java program to create a Hibernate configuration file (hibernate.cfg.xml)and establish a database connection.
- 2. Implement a Java program to perform CRUD operations (Create, Read, Update,Delete) using Hibernate.
- **3**. Develop a Java program to implement a one-to-many relationship between twoentity classes using Hibernate mappings.
- 4. Write a Java program to perform transaction management using Hibernate, including rollback and commit operations.
- 5. Develop a Java program to configure and use Hibernate caching mechanisms for optimizing database access.

Write a Java program to integrate Hibernate with Spring framework and develop a web application with database operations.

UNIT IV SPRING FRAMEWORK 9+ 6

Spring Framework - Dependency Injection by Constructor Example - Autowiring in Spring
Constructor Injection with Collection - Spring DAO - Inheriting Bean in SpringDependency
Injection by setter method.

List of Exercises

- 1. Create a basic Spring application that demonstrates dependency injection using constructor injection.
- 2. Write a program to demonstrate the use of Spring annotations like @Autowired, @Component, and @Configuration.

Implement a Spring bean that uses setter injection to inject dependencies.

9+6

Spring MVC - Spring Java Mail - Spring Security- Aspect Oriented Programming (AOP) -Web Services – postman - Design Patterns in Java

List of Exercises

- 1. Write a Spring MVC program to create a simple registration form with fields likename, email, and password, and validate the form inputs.
- 2. Implement a Spring MVC program that retrieves data from a database and displays it on a web page using the Model-View-Controller pattern.

Build a Spring MVC application that implements user authentication and authorization using Spring Security.

TOTAL: 75 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- **CO1:** Apply collections and IO Streams to efficiently manage and process datastructures and perform input/output operations in Java.
- **CO2:** Apply Java Stream API and Junits to streamline data manipulation and perform unittesting for robust code development.
- **CO3:** Develop a Seamlessly integrate object-oriented programming with databaseoperations for web applications using hibernate.
- **CO4:** Construct the power of the Spring Framework to provide a solid foundation for building scalable and maintainable applications.

CO5: Organize application logic, user interface, and data flow using the Spring MVC framework for efficient and modular development.

TEXTBOOKS:

Craig Walls, "Spring in Action", 5th Edition, Manning Publications, 2018

Paul deck, "Spring MVC: A Tutorial", Brainy Software, 2016

REFERENCES:

Maurice Naftalin and Philip Wadler, "Java Generics and Collections", O'Reilly Media inc., 2023

Joshua Bloch , "Effective Java" , Addison – Wesley Professional, 2017

Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft, "Java 8 in Action: Lambdas, Streams, and functional-style programming", Manning Publications, 2014

Christian Bauer and Gavin King ,"Java Persistence with Hibernate", Manning Publications, 2015

AmuthanG."Spring MVC: Beginner's Guide", Packt Publishing, 2014

PetarTahchiev, Felipe Leme, Vincent Massol, and Gary Gregory ,"JUnit in Action", Manning Publications, 2010

WEB REFERENCES:

Java Developer Certification,

https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01319338454002073 6264_shared/overview

ONLINE RESOURCES:

1. https://infyspringboard.onwingspan.com/web/en/page/home

LIST OF EQUIPMENTS:

Java Development Kit (JDK), IO classes, JUnit library, Spring Framework libraries and dependencies (such as spring-core, spring-context, spring-beans, SpringMVC

framework.

2205206	DESIGN AND ANALYSIS OF ALGORITHMS	L	Т	Р	С
22CS306	(Common to CSE, IT and AIML)	3	0	2	4

OBJECTIVES:

The Course will enable learners to:

- Critically analyse the efficiency of alternative algorithmic solutions for the same problem Illustrate brute force and divide and conquer design techniques.
- Explain dynamic programming for solving various problems.
- Apply greedy technique and iterative improvement technique to solve optimization problems
- Examine the limitations of algorithmic power and handling it in different problems.

UNIT I INTRODUCTION

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving –Fundamentals of the Analysis of Algorithmic Efficiency – Asymptotic Notations and their properties. Analysis Framework –Mathematical analysis for Recursive and Non-recursive algorithms

6+6

6+6

List of Exercise/Experiments:

- 1. Perform the recursive algorithm analysis.
- 2. Perform the non-recursive algorithm analysis.

UNIT II BRUTE FORCE AND DIVIDE AND CONQUER

Brute Force - String Matching - Exhaustive Search - Knapsack Problem -Divide and Conquer Methodology – Binary Search – Merge sort – Quick sort - Multiplication of Large Integers – Closest-Pair and Convex Hull Problems - Transform and Conquer Method: Heap Sort

List of Exercise/Experiments:

- **1.** Write a program to search an element using binary search
- 2. Write a program to sort the elements using merge sort and find time complexity.
- **3.** Write a program to sort the elements using quick sort and find time complexity.
- 4. Write a program to sort the elements using heap sort

UNIT III DYNAMIC PROGRAMMING

Dynamic programming – Principle of optimality – Floyd's algorithm – Multi stage graph - Optimal Binary Search Trees - Longest common subsequence - Matrix-chainmultiplication – Travelling Salesperson Problem – Knapsack Problem and Memory functions.

List of Exercise/Experiments:

- 1. Solve Floyd's algorithm
- 2. Write a program to find optimal binary search tree for a given list of keys.
- 3. Solve the multi-stage graph to find shortest path using backward and forward approach
- 4. Write a program to find the longest common subsequence

UNIT IV GREEDY TECHNIQUE AND ITERATIVE IMPROVEMENT 6+6

Greedy Technique – Prim's algorithm and Kruskal's Algorithm –Huffman Trees. The Maximum-Flow Problem – Maximum Matching in Bipartite Graphs- The Stable marriage Problem

List of Exercise/Experiments:

- 1. Write a program to find minimum spanning tree using Prim's algorithm
- 2. Implement Kruskal's algorithm to find minimum spanning tree
- 3. Write a program to solve maximum flow problem

UNIT VBACKTRACKING AND BRANCH AND BOUND6+6

P, NP NP- Complete and NP Hard Problems. Backtracking – N-Queen problem - SubsetSum Problem. Branch and Bound– LIFO Search and FIFO search - Assignment problem – Knapsack Problem - Approximation Algorithms for NP-Hard Problems – Travelling Salesman problem

List of Exercise/Experiments:

- 1. Write a program to implement sum of subset problem.
- 2. Write a program to solve N-Queen problem
- 3. Solve the assignment problem using branch and bound technique
- 4. Solve knapsack problem using branch and bound technique

TOTAL:60PERIODS

出出

6+6

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1:Solve mathematically the efficiency of recursive and non-recursive algorithms

CO2: Design and Analyse the efficiency of divide and conquer and transform and conquer algorithmic techniques

CO3:Implement and analyse the problems using dynamic programming

CO4:Solve the problems using and greedy technique and iterative improvement echnique for optimization

CO5:Compute the limitations of algorithmic power and solve the problems usingbacktracking and branch and bound technique.

TEXTBOOKS:

- 1. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Third Edition, Pearson Education, 2012.
- 2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer Algorithms/ C++, Second Edition, Universities Press, 2019.

REFERENCES:

- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, Third Edition, PHI Learning Private Limited, 2012.
- 2. S. Sridhar, Design and Analysis of Algorithms, Oxford university press, 2014.
- 3. http://nptel.ac.in/

LIST OF EQUIPMENTS: 🛛

Standalone PC with C/C++/Java

33 A M 201	ARTIFICIAL INTELLIGENCE	L	Т	Р	С		
22AM301		3	0	2	4		
OBJECTIVES :		_					
• To under	stand the various Intelligent agents and search strategies in AI.						
• To learn	about different problem-solving strategies using heuristic function	on.					
• To learn	about knowledge-based agents and first order logics.						
• To under	stand knowledge representation and planning.						
To know	about the expert system.						
UNIT I	ARTIFICIAL INTELLIGENCE AND INTELLIGENT AG	EN	ТS		9+6		
Introduction to	AI -Foundations of Artificial Intelligence - Intelligent Agent	s –	Ag	ents	and		
	Concept of rationality – Nature of environments – Structure of a						
solving agents -	Example Problems - Search Algorithms - Uninformed Search S	trate	egie	s.			
Lab Programs:							
1. Impleme	nt basic search strategies – 8-Puzzle, 8 - Queens problem.						
2. Impleme	nt Breadth First Search & Depth first Search Algorithm						
3. Impleme	nt Water Jug problem.						
4. Solve Tie	e-Tac-Toe problem.						
UNIT II	PROBLEM SOLVING				9+6		
Heuristic search	strategies - heuristic functions- Game Playing - Mini-max Algo	orith	m -	Op	timal		
decisions in games – Alpha-beta search –Monte-Carlo search for Games - Constraint satisfaction							
problems – Constraint propagation – Backtracking search for CSP – Local search for CSP –							
Structure of CSP							
Lab Programs:							
1. Impleme	1. Implement A* and memory bounded A* algorithms.						

2. Implement Minimax algorithm & Alpha-Beta pruning for game playing.

- 3. Constraint Satisfaction Problem 4. Mini Project - Chess. Sudoku. **UNIT III LOGICAL AGENTS** 9+6 Knowledge-based agents - Logic - Propositional logic - Propositional theorem proving Propositional model checking - Agents based on propositional logic First-Order Logic – Syntax and semantics – Using First-Order Logic - Knowledge representation and engineering - Inferences in first-order logic - Propositional Vs First-Order Inference Unification and First-Order Inference - Forward chaining - Backward chaining - Resolution. Lab Programs: 1. Implement Unification algorithm for the given logic. 2. Implement forward chaining and backward chaining using Python. **KNOWLEDGE REPRESENTATION AND PLANNING UNIT IV** 9+6 Ontological engineering - Categories and objects - Events - Mental objects and modal logic -Reasoning systems for categories – Reasoning with default information Classical planning – Algorithms for classical planning – Heuristics for planning – Hierarchical planning - non-deterministic domains - Time, schedule, and resources - Analysis Lab Programs: 1. Implementation of object detection. 2. Implement classical planning algorithms. LEARNING AND EXPERT SYSTEMS **UNIT V** 9+6 Forms of Learning – Developing Machine Learning systems – Statistical Learning - Deep Learning: Simple feed-forward network - Neural Networks - Reinforcement Learning: Learning from rewards - Passive and active Reinforcement learning. Expert Systems: Functions - Main structure - if-then rules for representing knowledge developing the shell – Dealing with uncertainty Lab Programs: 1. Develop an Expert system. 2. Mini-Project – Develop Machine Learning based classification Models. TOTAL: 45+30 = 75 PERIODS **OUTCOMES:** At the end of this course, the students will be able to: CO1: Illustrate the structure of agents and to implement various Intelligent agents. CO2: Apply search strategies in problem solving and game playing using heuristic function. CO3: Implement logical agents and first-order logic problems. CO4: Apply problem-solving strategies with knowledge representation mechanism for solving hard problems. CO5: Demonstrate the basics of expert systems and to develop models using machine learning techniques. **TEXT BOOKS:** 1. Peter Norvig and Stuart Russel, Artificial Intelligence: A Modern Approach, Pearson, 4th Edition, 2020. 1. Bratko, Prolog: Programming for Artificial Intelligence, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011. **REFERENCES:** 1. Elaine Rich, Kevin Knight and B.Nair, Artificial Intelligence 3rd Edition, McGraw Hill, 2017.
 - 2. Melanie Mitchell, Artificial Intelligence: A Guide for Thinking Humans. Series: Pelican Books, 2020

- 3. Ernest Friedman-Hill, Jess in Action, Rule-Based Systems in Java, Manning Publications, 2003
- 4. Nils J. Nilsson, The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 5. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, 1st Edition by Patterson, Pearson, India, 2015.
- 6. NPTEL Courses:
 - a. An Introduction to Artificial Intelligence <u>https://onlinecourses.nptel.ac.in/noc23_cs05/preview</u>
 - b. Artificial Intelligence: Knowledge Representation And Reasoning https://onlinecourses.nptel.ac.in/noc23_cs09/preview

22CE301	22GE301 Universal Human Values II: Understanding Harmony		Т	Р	С			
22GE301		2	2	0	3			
OBJECTIVES:								
	nent of a holistic perspective based on self-exploration about the eing), family, society and nature/existence.	mse	lves					
	nding (or developing clarity) of the harmony in the human being	. far	nilv					
	id nature/existence	,	5	2				
• Strengthe	ning of self-reflection.							
 Developm 	nent of commitment and courage to act.							
COURSE TOPIC								
The course has 28	lectures (2 lecture hours) and 14 practice sessions (2 Tutorial ho	ur) i	n 5	Uni	ts:			
UNIT I	Course Introduction - Need, Basic Guidelines, Content and for Value Education	Pro	oces	S				
Purpose and a	notivation for the course, recapitulation from Universal Human	Val	ues-	Ι	<u></u>			
• Self-Explorat	ion-what is it? - Its content and process; 'Natural Acceptance' as	nd E	xpe	rien	tial			
Validation- a	s the process for self-exploration							
Continuous H	Iappiness and Prosperity- A look at basic Human Aspirations							
• Right unders	standing, Relationship and Physical Facility- The basic red	quire	emei	nts	for			
fulfillment of aspirations of every human being with their correct priority								
• Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario								
• Method to fu	• Method to fulfil the above human aspirations: Understanding and living in harmony at							
various levels	ð.							
1	essions to discuss natural acceptance in human being as the inresponsibility (living in relationship, harmony and co-existence)							

 arbitrariness in choice based on liking-disliking

 UNIT II
 Understanding Harmony in the Human Being – Harmony in Myself!

• Understanding human being as a co-existence of the sentient 'I' and the material 'Body'

- Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- Understanding the body as an instrument of 'I' (I being the doer, seer and enjoyer)
- Understanding the characteristics and activities of 'I' and harmony in 'I'
- 'Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss programs for ensuring health vs dealing with disease

UNIT III	Understanding Harmony in the Family and Society- Harmony in
	Human-Human Relationship

- Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect; Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, Fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided society, Universal orderfrom family to world family

from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institutes extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

UNIT IV	Understanding Harmony in the Nature and Existence - Whole
	existence as coexistence

- Understanding the harmony in nature
- Interconnectedness and mutual fulfilment among the four orders of nature-recyclability and self-regulation in nature
- Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- Holistic perception of harmony at all levels of existence.
- Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

UNIT V		Implic	ations o	of the above	e Holistic	Understanding of]	Harmony on
		Profess	sional E	thics			
NT (1		C 1	1			

- Natural acceptance of human values
- Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

- Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems.
- Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- Sum up.

Include practice exercises and case studies will be taken up in practice (tutorial) sessions eg. To discuss the conduct as an engineer or scientist etc.

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Would become more aware of themselves, and their surroundings (family, society, nature). CO2: Would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

CO3: Would have better critical ability.

CO4: Would become sensitive to their commitment towards what they have understood (human values, human relationship, and human society).

CO5: Would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

TEXT BOOK:

1. R R Gaur, R Sangal, G P Bagaria, "Human Values and Professional Ethics",

Excel Books, New Delhi, Second Edition 2019.

REFERENCES:

- 1. A Nagaraj, "Jeevan Vidya: Ek Parichaya", Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. E. F Schumacher, "Small is Beautiful", Vintage classics, London, 1993.
- 3. A.N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, Third Edition 2020.
- 4. Maulana Abdul Kalam Azad, "India Wins Freedom", Oriental blackswan private limited, Hyderabad, 2020.
- 5. Mahatma Gandhi, "Hind Swaraj or Indian Home Rule", Maheswari Publications, Delhi 2020.
- 6. Romain Rolland, "The life of Vivekananda and the universal gospel", Publication house of Ramakrishna Math, Kolkata, Thirty second edition 2018.

- 7. Romain Rolland, "Mahatma Gandhi: The man who become one with the universal being ", Srishti Publishers & Distributors, New Delhi, Sixth Edition 2013.
- 8. Heaton, Dennis P. "The story of stuff." (2010): 553-556.
- 9. Gandhi, Mohandas Karamchand, "The story of my experiments with truth: An autobiography", Om Books International, 2018.
- Andrews, Cecile, "Slow is beautiful: new visions of community, leisure, and joie de vivre", New society publishers, 2006.
- Kumarappa, Joseph Cornelius, "The economy of permanence. CP", All India Village Industries Assn., 1946.

22GE311	PRODUCT DEVELOPMENT LAB – III (Design and Analysis Phase)	L T P 0 0 2	С		
22GE511	(Common to All Branches)	0	0	2	1

OBJECTIVES:

The Course will enable learners to:

- To provide an adequate understanding of project/product concepts and creative design process.
- Create a methodology to develop solutions to complex systems.

The students can form a team of 3 or 4 to work on the approved topic by the faculty in-charge. All approved product/process topics should have the following stages as listed under activities. The faculty in-charge conducts a periodic review to endorse the work process and during the review, the faculty shall provide suggestions/ideas to improvise the project towards completion. An interim report (consisting of literature, photographs, proof of the work done, etc..) for all listed activities should be submitted by the team during periodic review for evaluation. A final project report is required at the end of the semester for evaluation.

LIST OF ACTIVITIES:

- 1. Develop the design stage for a product from the concept.
 - Researching it in-depth.
 - Ideating possible solutions.
 - Selecting a promising solution.
 - Make a mock-up model
 - Comprehend the design features of the mock-up model.
- 2. Evaluate the pros-cons of the mock-up (& with the existing product).
- 3. Generate the Design for Manufacturing and Assembly (DFMA) process route for the product with necessary interdisciplinary collaborations.

TOTAL: 30 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- CO1 Enhance their skills in design concepts, rules and procedures.
- CO2 Develop their cognitive strategy to think, organize, learn and behave.
- CO3 Demonstrate the ability to provide conceptual design strategies for a product.
- CO4 Describe the procedure for designing a Mock-up model.
- CO5 Recognize and apply appropriate interdisciplinary and integrative strategies for solving complex problems

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S.No	Equipment Name	Quantity
1	CNC Router	1 No
2	3D Printer	1 No
3	3D Scanner	1 No
4	Laser cutting Machine	1 No
5	Centre lathe	2 Nos
6	Arc welding transformer with cables and holders	2 Nos
7	Plumbing tools	2 Sets
8	Carpentry tools	2 Sets
9	Multimeter	10 Nos
10	Drilling Machine	1 No
11	Solder Stations	5 Sets
12	Desoldering Machine	1 No
13	PCB Milling Machine	1 No
14	Variable Power Supply	1 No
15	Electronic Components like Resistors, Transistors, Diode, Inductor, Capacitor, etc.	10 Sets
16	Personal Desktop Computers	30 Nos
17	3D Modelling software – Creo/ AutoCAD/ etc.,	30 Licence
	அறிவே ஆக்கய	

L	Т	Р	С
0	0	2	1

OBJECTIVES:

The Course will enable learners to:

- Develop vocabulary for effective communication and reading skills.
- Build the logical reasoning and quantitative skills.
- Develop error correction and debugging skills in programming.

List of Exercises:

1. English – Phase I

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

2. Logical Reasoning – Phase I

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

3. Quantitative Ability - Phase I

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speedand Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

4. Automata Fix – Phase I

Logical, Compilation and Code reuse

TOTAL: 30 PERIODS

SHERE IN

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Develop vocabulary for effective communication and reading skills.

CO2: Build the logical reasoning and quantitative skills.

CO3: Develop error correction and debugging skills in programming.

அற்டீவ

22MA401	PROBABILITY AND STATISTICS		P	<u> </u>
	(Common to CSE, IT and AIML) 3	0	2	4
OBJECTIVE				
	vill enable learners to:			
	he necessary basic concepts of random variables and to in	troduce	somes	standard
distributi				
	hypothesis for small and large samples.			
	e the concepts of Analysis of Variances. nd the concept of statistical quality control.			
	LOGIC AND PROOFS			15
	ility definitions- Independent events- Conditional prol	ability	(revisi	
	crete and continuous random variables - Moments - Mo			
	sson, Geometric, Uniform, Exponential and Normal distr			0
	ise/Experiments using R Programming:			
	nditional probability.			
Finding mean	, variance and standard deviation.			
UNIT II	TWO-DIMENSIONAL RANDOM VARIABLES	-	ſ	15
	ions - Marginal and conditional distributions - Covarian	e Cor	ralation	-
	ransformation of random variables.	C - COI	Clation	i anumicai
	funsion of function variables.			
List of Exerc	ise/Experiments using R Programming:			
	narginal density functions for discrete random variables.			
	ng correlation and regression.			
UNIT	TESTING OF HYPOTHESIS			15
III		Loro		
III Sampling dist	ributions - Estimation of parameters - Statistical hypothes			ole tests based
III Sampling dist on Normal dis	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b	ased on	t and I	ole tests based distributions
III Sampling dist on Normal dis	ributions - Estimation of parameters - Statistical hypothes	ased on	t and I	ole tests based distributions
III Sampling dist on Normal dis for mean and	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b variance - Chi-square test- Contingency table (test for ind	ased on	t and I	ole tests based distributions
III Sampling dist on Normal dis for mean and List of Exerci	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b	ased on	t and I	ole tests based distributions
III Sampling dist on Normal dis for mean and List of Exerci 1. Testing o	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming:	ased on	t and I	ole tests based distributions
III Sampling dist on Normal dis for mean and List of Exerci 1. Testing of 2. Testing of	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test.	ased on	t and I	ble tests based F distributions bodness of fit
III Sampling dist on Normal dis for mean and List of Exerci 1. Testing of 2. Testing of UNIT IV	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS	ased on epender	t and I nt) - Go	ble tests based distributions bodness of fit
IIISampling diston Normal distor mean andCor mean andList of Exerci1. Testing of2. Testing ofUNIT IVOne way and	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS Two-way classifications - Completely randomized des	ased on epender	t and I nt) - Go	ble tests based distributions bodness of fit
III Sampling dist on Normal dis for mean and List of Exerci 1. Testing of 2. Testing of UNIT IV One way and	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests b variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS	ased on epender	t and I nt) - Go	ble tests based distributions bodness of fit
III Sampling dist on Normal dis for mean and List of Exerci 1. Testing of 2. Testing of UNIT IV One way and plockdesign -	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests be variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS Two-way classifications - Completely randomized des Latin square design.	ased on epender	t and I nt) - Go	ole tests based F distributions oodness of fit
III Sampling dist on Normal dist for mean and List of Exerci 1. Testing of 2. Testing of UNIT IV One way and blockdesign -	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests be variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS Two-way classifications - Completely randomized des Latin square design. ise/Experiments R Programming:	ased on epender	t and I nt) - Go	ole tests based F distributions bodness of fit.
III Sampling dist on Normal dis for mean and List of Exerci 1. Testing of 2. Testing of UNIT IV One way and blockdesign - List of Exerc 1. Perform	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests h variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS Two-way classifications - Completely randomized des Latin square design. ise/Experiments R Programming: one-way ANOVA test for the given data.	ased on epender	t and I nt) - Go	ole tests based F distributions oodness of fit
III Sampling dist on Normal dist for mean and List of Exerci 1. Testing of 2. Testing of UNIT IV One way and blockdesign - List of Exerc 1. Perform	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests be variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS Two-way classifications - Completely randomized des Latin square design. ise/Experiments R Programming:	ased on epender	t and I nt) - Go	ole tests based F distributions bodness of fit.
III Sampling dist on Normal dis for mean and List of Exerci 1. Testing of 2. Testing of UNIT IV One way and blockdesign - List of Exerci 2. Perform	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests be variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS Two-way classifications - Completely randomized des Latin square design. ise/Experiments R Programming: one-way ANOVA test for the given data. two-way ANOVA test for the given data.	ased on epender	t and I nt) - Go	ole tests based F distributions bodness of fit
III Sampling dist on Normal dist or mean and List of Exerci 1. Testing of 2. Testing of UNIT IV One way and blockdesign - List of Exerc 1. Perform 2. Perform UNIT V	ributions - Estimation of parameters - Statistical hypothes stribution for single mean and difference of means - Tests be variance - Chi-square test- Contingency table (test for ind se/Experiments using R Programming: of hypothesis for given data using Z - test. of hypothesis for given data using t - test. DESIGN OF EXPERIMENTS Two-way classifications - Completely randomized des Latin square design. ise/Experiments R Programming: one-way ANOVA test for the given data. two-way ANOVA test for the given data.	ased on epender ign - Ra	t and I nt) - Go	ole tests based F distributions bodness of fit 15 ized

List of Exercise/Experiments using R Programming:

- Interpret the results for X-Chart for variable data.
 Interpret the results for R-Chart for variable data.

OUTCOMES:
Upon completion of the course, the students will be able to: CO1: Calculate the statistical measures of standard distributions.
CO2: Compute the correlation & regression for two dimensional random variables. CO3: Apply the concept of testing the hypothesis.
CO4: Implement the concept of analysis of variance for various experimental designs. CO5: Demonstrate the control charts for variables and attributes.
FEXTBOOKS:
1. R.A. Johnson, I. Miller and J. Freund, "Miller and Freund's Probability and Statistics for
Engineers", Pearson Education, Asia, 8th Edition, 2015.
2. J.S. Milton and J.C. Arnold, "Introduction to Probability and Statistics", Tata
McGrawHill, 4th Edition, 2017.
REFERENCES:
1. J.L. Devore, "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 9th Edition, 2016.
2. S.M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", 6th Edition, Elsevier, 2020.
3. M.R. Spiegel, J. Schiller and R.A. Srinivasan, "Schaum's Outline of Theory and
Problems of Probability and Statistics", Tata McGraw Hill Edition, 2004.
4. R.E.Walpole, R.H.Myers, S.L. Myers and K.Ye, "Probability and Statistics for
Engineers and Scientists". Pearson Education, Asia, 9th Edition, 2012
NEURAL NETWORKS
22AM401 $\frac{2}{2} \frac{1}{0} \frac{2}{2} \frac{3}{3}$
OBJECTIVES:
• To understand the biological neural network and to model equivalent neuron models.
• To understand the architecture, learning algorithms.
• To know the issues of various feed forward and feedback neural networks.
To gain deep insight about Boltzmann Machine Learning
To explore Autoencoders and Hopfield Nets
UNIT I INTRODUCTION 6+6
A Neural Network, Human Brain, Models of a Neuron, Neural Networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial Intelligence and Neural Networks Learning Process: Error Correction Learning, Memory Based Learning, Hebbian Learning,
Competitive, Boltzmann Learning, Credit Assignment Problem, Memory, Adaption, Statistical
Nature of the Learning Process.
A simple example of learning – Three types of Learning – Types of Neural Network Architectures
Lab Programs:
1. Study of JAX and its installation
2. Perform matrix operations.
3. Plot multiple curves in single plot.
4. Plot Activation function used in neural network
5. Create a simple neural network
UNIT II PERCEPTRONS 6+6
Adaptive Filtering Problem, Unconstrained Organization Techniques, Linear Least Square Filters,
Least Mean Square Algorithm, Learning Curves, Learning Rate Annealing Techniques,
Perceptron –Convergence Theorem, Relation Between Perceptron and Bayes Classifier for a
Gaussian Environment – A geometrical view of Perceptrons – What perceptrons can't do

Representation and Decision Rule, Computer Experiment, Feature Detection

Lab Programs:

- 1. Create a Perceptron.
- 2. Pattern Classification using Perceptron network.
- 3. Build a neural network by implementing the Single-layer Perceptron. Test it using appropriate data sets.

UNIT III BACK PROPAGATION

6+6

6+6

6+6

Learning the weights of a linear neuron-error surface – learning weights of logistic output neuron-Back Propagation and Differentiation, Hessian Matrix, Generalization, Cross Validation, Network Pruning Techniques, Virtues and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning

Lab Programs:

- 1. Implement Multi-layer Perceptron and test the same using appropriate data sets.
- 2. Create a Back Propagation Feed-forward neural network.
- 3. Implement and train a Bayesian Neural network.

UNIT IV BOLTZMANN MACHINE LEARNING

How a Boltzmann machine models data - Restricted Boltzmann machine- example of RBM learning-Collaborative filtering-learning layers of features by stacking RBMs.

Lab Programs:

- 1. Model real valued data with RBM.
- 2. Demonstrate looking for patterns in gene expression profiles in baker's yeast.

UNIT V AUTOENCODERS AND HOPFIELD NETS

From PCA to autoencoders-Deep autoencoders-document retrieval- semantic hashing – learning

TOTAL: 30+30 = 60 PERIODS

binary codes for image retrieval- shallow autoencoders

Hopfield Network – Hopfield Models- Hopfield nets with hidden units

Lab Programs:

- 1. Design a Hopfield Network which stores 4 vectors
- 2. Image retreival
- 3. Mini Project Face recognition

OUTCOMES:

At the end of this course, the students will be able to:

- CO1: Understand the similarity of Biological networks and Neural networks
- CO2: Perform the training of neural networks using various learning rules.
- CO3: Understand the concepts of forward and backward propagations.
- CO4: Explain Boltzmann Machine Learning.
- CO5: Construct Hopfield nets and learn autoencoders.

TEXT BOOKS:

- 1. Neural Networks a Comprehensive Foundations, Simon S Haykin, PHI Ed
- 2. Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed. 2006.
- 3. Christopher M Bishop, Pattern Recognition and Machine Learning. Springer. 2011.
- 4. Geoffrey Hintonand Terrence J. Sejnowski, Unsupervised Learning: Foundations of Neural Computation.

REFERENCES:

- 1. Neural Networks for Machine Learning Geoffrey E. Hinton, UoFT <u>https://www.youtube.com/playlist?list=PLLssT5z_DsK_gyrQ_biidwvPYCRNGI3iv</u>
- 2. Neural Networks in Computer Intelligence, Li Min Fu TMH 2003
- 3. Neural Networks -James A Freeman David M S Kapura Pearson Ed., 2004.
- 4. Artificial Neural Networks B. Vegnanarayana Prentice Hall of India P Ltd 2005

MACHINE LEARNING ESSENTIALS

L	Т	Р	С
3	0	2	4

OBJECTIVES:

- To discuss the basics of Machine Learning and model evaluation.
- To study dimensionality reduction techniques. •
- To understand the various classification algorithms.
- To elaborate on unsupervised learning techniques.
- To design and analyze machine learning experiments.

UNIT I **INTRODUCTION**

9+6

Machine Learning – Types – Applications – Preparing to Model – Activities – Data – Exploring structure of Data – Data Quality and Remediation – Data Pre-processing – Modelling and Evaluation: Selecting a Model - Training a Model - Model representation and Interpretability -Evaluating Performance of a Model – Improving Performance.

Lab Programs:

- 1. Implementation of Candidate Elimination algorithm
- 2. Implementation of ML model evaluation techniques (R-Squared/Adjusted R-Squared/Mean Absolute Error/Mean Squared Error)
- 3. Implementation of ML model evaluation techniques (Confusion Matrix/F1 Score/AUC-ROC Curve)

UNIT II FEATURE ENGINEERING AND DIMENSIONALITY REDUCTION 9+6

Feature Engineering – Feature Transformation – Feature Subset Selection - Principle Component Analysis – Feature Embedding – Factor Analysis – Singular value decomposition and Matrix Factorization – Multidimensional scaling – Linear Discriminant Analysis – Canonical Correlation Analysis – Isomap – Locally linear Embedding – LaplacianEigenmaps.

Lab Programs:

- 1. Write python code to identify feature co-relations (PCA)
- 2. Interpret Canonical Covariates with Heatmap
- 3. Feature Engineering is the way of extracting features from data and transforming them into formats that are suitable for Machine Learning algorithms. Implement python code for Feature Selection/Feature Transformation/Feature Extraction.
- 4. Mini Project Feature Subset Selection

UNIT III SUPERVISED LEARNING

Linear Regression - Relation between two variables - Steps - Evaluation - Logistic Regression -Decision Tree - Algorithms - Construction - Classification using Decision Tree - Issues - Rulebased Classification – Pruning the Rule Set – Support Vector Machines – Linear SVM – Optimal Hyperplane – Radial Basis Functions – Naïve Bayes Classifier – Bayesian Belief Networks.

Lab Programs:

- 1. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.
- 2. Implement and demonstrate the working of the decision tree-based ID3 algorithm
- 3. Build a Simple Support Vector Machines using a data set

UNIT IV **UNSUPERVISED LEARNING**

Clustering - Types - Applications - Partitioning Methods - K-means Algorithm - K-Medoids -Hierarchical methods – Density based methods DBSCAN – Finding patterns using Association Rules – Hidden Markov Model.

Lab Programs:

- 1. Implement a k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions
- 2. Implement market based analysis using association rules
- 3. Mini Project using Clustering analysis.

9+6

9+6

UNIT V	DESIGN AND ANALYSIS OF MACHINE LEARNING 9 EXPERIMENTS	9+6
Guidelines for	or Machine Learning Experiments - Cross Validation and Resampling Method	ls –
Assessing a	Classification Algorithm - Comparison - Two algorithms, multiple algorithm	ns –
Multivariate	Tests	
Lab Progra		
	truct a Bayesian network considering medical data. Use this model to demonstrate	te
	iagnosis of heart patients using a standard Heart Disease Data Set	
	y EM algorithm to cluster a set of data. Use the same dataset for clustering using	g k-
Mean	ns algorithm. Compare the results of these two algorithms.	DO
	TOTAL: 45+30 = 75 PERIO	JD2
OUTCOME	LS:	
At the end o	of this course, the students will be able to:	
CO1: Explai	in the basics of Machine Learning and model evaluation.	
CO2: Study	dimensionality reduction techniques.	
CO3: Under	stand and implement various classification algorithms.	
CO4: Under	stand and implement various unsupervised learning techniques.	
CO5: Design	n and analyze machine learning experiments.	
TEXT BOO	·	
2019. 2. Ether Learr	atDutt, Subramanian Chandramouli, Amit Kumar Das, Machine Learning, Pears . (Unit 1 – Chap 1,2,3/ Unit 2 – Chap 4 / Unit 4 – Chap 9) mAlpaydin, Introduction to Machine Learning, Adaptive Computation and Mach ning Series, Third Edition, MIT Press, 2014. (Unit 2 – Chap 6 / Unit 4 – chap 8.2	nine
REFERENC	5 – Chap 19)	
(Unit 2. Peter 3. Steph Chap 4. Tom Christopl Expla 5. Chris	adhaSrinivasaraghavan, Vincy Joseph, Machine Learning, First Edition, Wiley, 20 3 – Chap 7,8,9,10,11 / Unit 4 – 13, 11.4, 11.5,12) Harrington, "Machine Learning in Action", Manning Publications, 2012. Then Marsland, "Machine Learning – An Algorithmic Perspective", Second Edition and Hall/CRC Machine Learning and Pattern Recognition Series, 2014. M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013. The Molnar, "Interpretable Machine Learning - A Guide for Making Black Box Mod ainable", Creative Commons License, 2020. Stoph Molnar, "Interpretable Machine Learning - A Guide for Making Black E els Explainable", Creative Commons License, 2020. EL Courses:	ion, dels

22CS302	COMPUTER ORGANIZATION ANDARCHITECTURE	L	Τ	Р	С
	(Common to CSE and AIML)	3	0	0	3
OBJECTI					
The Course v	vill enable learners to:				
•	Describe the basic principles and operations of digital comp	uters.			
•	Design arithmetic and logic unit for various fixed and floating	ng poi	nt ope	ration	S
•	Construct pipeline architectures for RISC processors.				
•	Explain various memory systems &I/O interfacings				
•	Discuss parallel processor and multi-processor architectures				
UNIT I	COMPUTER FUNDAMENTALS				9
Computer Ty	pes - Functional Units — Basic Operational Concepts — Numl	ber Re	prese	ntatior	n and
Arithmetic O	perations - Performance Measurement — Instruction Set A	Archite	ecture	- Me	emory
Locations and	Addresses - Instructions and Instruction Sequencing - Addres	sing N	lodes.		
UNIT II	COMPUTER ARITHMETIC				9
Addition and	Subtraction of Signed Numbers - Design of Fast Adders - Mul	tiplica	ation o	of Uns	igned
	ultiplication of Signed Numbers - Fast Multiplication - Integ	-			-
	rs and Operations.				0
UNIT III	BASIC PROCESSING UNIT AND PIPELINING				9
	asic Concept - Pipeline Organization- Pipelining Issues - Data	Denen	denci	- 26	
Memory Dela Operation.	asic Concept - Pipeline Organization- Pipelining Issues - Data I ys - Branch Delays - Resource Limitations - PerformanceEvalu	-			
Memory Dela Operation. UNIT IV	Ivs - Branch Delays - Resource Limitations - PerformanceEvalue I/O AND MEMORY	uation	-Supe	erscala	9
Memory Dela Operation. UNIT IV Input/Output Concepts - S Memory Hier	sys - Branch Delays - Resource Limitations - PerformanceEvalu	Memo irect N	-Supe ory Sy Iemor	erscala stem: y Acc	9 Basic cess -
Memory Dela Operation. UNIT IV Input/Output Concepts - S Memory Hier	I/O AND MEMORY Organization: Bus Structure - Bus Operation - Arbitration - The emiconductor RAM Memories - Read-only Memories - Di- archy - Cache Memories - Performance Considerations - Virt	Memo irect M ual M	-Supe ory Sy Iemor emory	erscala stem: y Acc	9 Basic cess -
Memory Dela Operation. UNIT IV Input/Output Concepts - S Memory Hier Management UNIT V Parallel Proce Chip Multipro	Lys - Branch Delays - Resource Limitations - PerformanceEvalue I/O AND MEMORY Organization: Bus Structure - Bus Operation - Arbitration - The emiconductor RAM Memories - Read-only Memories - Directory - Cache Memories - Performance Considerations - Virt Requirements - Secondary Storage. PARALLEL PROCESSING AND MULTICORE COMP essing: Use of Multiple Processors - Symmetric Multiprocessor occessors - Clusters – Non uniform Memory Access Computers	Memo irect M ual M PUTE rs - M	-Supe ory Sy Iemor emory RS	stem: y Acc / - Me	9 Basic cess - emory 9 g and
Memory Dela Operation. UNIT IV Input/Output Concepts - S Memory Hier Management UNIT V Parallel Proce Chip Multipro	I/O AND MEMORY Organization: Bus Structure - Bus Operation - Arbitration - The emiconductor RAM Memories - Read-only Memories - Dirarchy - Cache Memories - Performance Considerations - Virt Requirements - Secondary Storage. PARALLEL PROCESSING AND MULTICORE COMP essing: Use of Multiple Processors - Symmetric Multiprocesson coessors - Clusters – Non uniform Memory Access Computers ganization.	Memo irect M ual M PUTE: rs - M s Vect	-Supe ory Sy Iemor emory RS fultithi or Co	stem: y Acc / - Me readin mputa	9 Basic cess - emory 9 g and tion -
Memory Dela Operation. UNIT IV Input/Output Concepts - S Memory Hier Management UNIT V Parallel Proce Chip Multipro Multicore Org	ivys - Branch Delays - Resource Limitations - PerformanceEvalue I/O AND MEMORY Organization: Bus Structure - Bus Operation - Arbitration - The emiconductor RAM Memories - Read-only Memories - Dirarchy - Cache Memories - Performance Considerations - Virt Requirements - Secondary Storage. PARALLEL PROCESSING AND MULTICORE COMP essing: Use of Multiple Processors - Symmetric Multiprocesso occessors - Clusters – Non uniform Memory Access Computers ganization.	Memo irect M ual M PUTE: rs - M s Vect	-Supe ory Sy Iemor emory RS fultithi or Co	stem: y Acc / - Me	9 Basic cess - emory 9 g and tion -
Memory Dela <u>Operation.</u> UNIT IV Input/Output (Concepts - S Memory Hier Management UNIT V Parallel Proce Chip Multipro Multicore Org OUTCOM	ivys - Branch Delays - Resource Limitations - PerformanceEvalue I/O AND MEMORY Organization: Bus Structure - Bus Operation - Arbitration - The emiconductor RAM Memories - Read-only Memories - Dirarchy - Cache Memories - Performance Considerations - Virt Requirements - Secondary Storage. PARALLEL PROCESSING AND MULTICORE COMP essing: Use of Multiple Processors - Symmetric Multiprocesso occessors - Clusters – Non uniform Memory Access Computers ganization.	Memo irect M ual M PUTE: rs - M s Vect	-Supe ory Sy Iemor emory RS fultithi or Co	stem: y Acc / - Me readin mputa	9 Basic cess - emory 9 g and tion -
Memory Dela <u>Operation.</u> UNIT IV Input/Output Concepts - S Memory Hier Management UNIT V Parallel Proce Chip Multipro Multicore Org OUTCOM Upon compl CO1: Explat CO2:Design	ivs - Branch Delays - Resource Limitations - PerformanceEvalue I/O AND MEMORY Organization: Bus Structure - Bus Operation - Arbitration - The emiconductor RAM Memories - Read-only Memories - Dirarchy - Cache Memories - Performance Considerations - Virt Requirements - Secondary Storage. PARALLEL PROCESSING AND MULTICORE COMP essing: Use of Multiple Processors - Symmetric Multiprocesson coessors - Clusters – Non uniform Memory Access Computers ganization. ES:	Memo irect M ual M PUTE rs - M s Vect TOT	-Supe ory Sy femor emory RS fultithe or Co:	stem: y Acc y Acc y - Me readin mputa	9 Basic cess - emory 9 g and tion -
Memory Dela <u>Operation.</u> UNIT IV Input/Output Concepts - S Memory Hier Management UNIT V Parallel Proce Chip Multipre Multicore Org OUTCOM Upon compl CO1: Explat CO2:Design CO3: Devel CO4: Sum	Ivo AND MEMORY Organization: Bus Structure - Bus Operation - Arbitration - The emiconductor RAM Memories - Read-only Memories - Diarchy - Cache Memories - Performance Considerations - Virt Requirements - Secondary Storage. PARALLEL PROCESSING AND MULTICORE COMP essing: Use of Multiple Processors - Symmetric Multiprocesson occessors - Clusters – Non uniform Memory Access Computers ganization. ES: letion of the course, the students will be able to: in the basic principles and operations of digital computers. arithmetic and Logic Unit to perform fixed and floating-poin op pipeline architectures for RISC Processors. narize Various Memory systems &I/O interfacings. marize Parallel Processor and Multi Processor Architectures	Memo irect M ual M PUTE rs - M s Vect TOT	-Supe ory Sy femor emory RS fultithe or Co:	stem: y Acc y Acc y - Me readin mputa	9 Basic cess - emory 9 g and tion -

1.Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer organization, Tata McGrawHill, Sixth edition, 2012.

2.David A. Patterson and John L. Hennessy Computer Organization and Design-The Hardware/Software Interface 5th edition, Morgan Kaufmann, 2013.

REFERENCES:

1.John P.Hayes, Computer Architecture and Organization, Third Edition, TataMcGrawHill, 2012.

2.David A. Patterson and John L. Hennessy Computer Organization and Design-The Hardware/Software Interface, 6th edition, Morgan Kaufmann, 2021.

3.John L. Hennessy and David A. Patterson, Computer Architecture – A Quantitate Approach, Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

22IT403	WEB DEVELOPMENT FRAMEWORKS	L	Т	Р	С
2211403	WEB DEVELOPMENT FRAMEWORKS	3	3 0 2	2	4
OBJECTIV	ES:				
The C	ourse will enable learners to:				
• To u	nderstand web semantics and related tools and framework				
• Able	to get hands on latest JS based web frameworks				
• To d	evelop a scalable and responsive web application				
• To de	evelop an industry ready application web enterprise feature				
UNIT I	ADVANCED JAVASCRIPT	\rightarrow			9+6
Introduction	to HTML5 and CSS3, Media Queries, JS, DOM, BootStrap, V	Variable	es, Loo	ps, Oper	ators,
Scope, Hoist	ing, Arrays, Spread, REST, DeStructuring				
List of Exer	cise/Experiments				
1) Crea	te a JS Object for Bank Account (w attributes like à customer	name, a	ccount	type,ba	lance,
data	of creation, bank name, branch name, pan card number). Usir	ng JS O	bject k	eyword,	try to
perfo	orm following activities				
≻ L	ist down all the entries of the bank object				
> (Theck the existence of a key				
> I	f key found, get the value for the key				
2) Sprea	ad Operator				
> N	Ierge Customer and Account Arrays				
) ∢	Update the Customer Object with the new values	Ш			
> [Develop a function that takes an Spread Argument and calcula	tes total	balan	ce.	
UNIT II	INTRODUCTION TO REACTJS				

Functions, Lambda Expressions, REST - Introduction, Why JSX, Hello World Apps, Project Structure List of Exercise/Experiments 1) Create a list of Bank Objects (same kind of object you used in above lab, but in a array format) Display the banks where balance is greater than 200 deduct 10% of the Bank account balance, as part of monthly service fees > Display the banks where balance is greater than 200 and branch code is "Chennai" Add a new Bank to the given array Delete a bank from the array (use splice operator) Calculate the total balance of all bank accounts 2) Develop a Scientific calculator that does following operations Rounded Value ➢ Area of Circle Calculating of Sin, Cos and Tan functions Permiter of an Rectangle Employ Arrow functions ➢ Employ HOC **REACT COMPONENTS AND HOOKS UNIT III** 9+6 Class vs Functional Components, React Class Based Components - component DidMount, WillUpdate, shouldupate, didcatchetc - State - UseState, UseRef, USeEffect, UseHistory Usage and Props(difference, when to use what, mutable or immutability, direction of flow), PropTypes, Auxillary Components, Controlled and Uncontrolled Components, Component Interaction (Parent to Child and Child to Parent), Iteration & Conditional Response List of Exercise/Experiments 1) Create a collection of Customer by using Weak Map and Map Collection in JS Show Case the different feature set of the same. 2) Add Login Page, Dash Board Page, Admin Page Enable React Routing Add React Protected Route, for authorization UNIT IV **REACT LIBRARY - I** 9+6 Event Bubbleup - Component Wrapper - Integration of CSS Modules - Forms Validations(YUP, Formik, Standard), Events Handling, Data Binding List of Exercise/Experiments 1) Develop a React application that has User Registration Form w field level validations, data submission to a rest api end point, boot strap for responsive. ▶ Use YUP or Formik to implement the same UNIT V **REACT LIBRARY - II** 9+6

Class-Inheritance, Methods, Extended Class-Map, filter and Reduce Functions, Functions - Arrow

Custom Hooks, HTTP - Fetch, Axios, Services, Behaviour Subjects - StateLess, StateFull and Container Components, Error Handling - Build, Env, CORS, Unit Testing w React Testing Library -Introduction to react-native - Introduction to Story Book

List of Exercise/Experiments

- 1) Employ back end api for Login Page functionality (authentication). Post login, store the user context (received from the back end server) in browser's session storage as objects. And use the same as creds during protected route verification
 - On the dashboard page, have a grid of Students. The data has to be bought from back end API
 - □ Employ useref, useeffect &usestate, and useHistory
 - 1) Enable Exception Handling
 - 2) Enable HOC and Aux Components
 - 3) Implement React-Testing Library

Business Use Case Implementations

- 1) Student Management System
- 2) Retail Bank System
- 3) eCommerce System
- 4) Student LMS Management System

TOTAL:45+30=75 PERIODS

OUTCOMES:

At the end of the course, the students will be able to:

CO1: Personalize web pages using text formatting, graphics, audio, and video.

CO2: Hands on knowledge on Rest API, propTypes

CO3: Able to develop a web application using latest React Framework

CO4: Apply various React features including functions, components, and services.

CO5: Able to develop application using ReactJshooks .

TEXTBOOKS:

1) <u>David Flanagan</u>, Javascript The Definitive Guide, Paperback, 7th Edition, 2020.

2) David Choi ,Full-Stack React, TypeScript, and Node: Build cloud-ready web applications

using React 17 with Hooks and GraphQL Paperback – Import, 18 December 2020

3) Mehul Mohan, Advanced Web Development with React Paperback – 1 January 2020

REFERENCES:

1. PARENTAL WEBSITE - <u>https://reactjs.org/</u>

- 2. The Road to Learn React: Your journey to master plain yet pragmatic React.js by Robin Wieruch
- 3. Learning React: Functional Web Development with React and Redux by Alex Banks and Eve Porcello

4. Learning React by Kirupa Chinnathambi

- 5. "React Up & Running" by StoyanStefanov
 - 6. <u>https://www.edureka.co/reactjs-redux-certification-training</u>

ONLINE LEARNING PLATFORMS :

- ➢ CodePen,
- CodeSandbox (ß Preferred)
- Stackblitz.

LIST OF EQUIPMENTS:

- NodeJS (v9.11.2)
- Github as code repository
- Visual studio code as IDE
- RTL as unit testing framework
- Responsive design w bootstrap
- ReactJS installation (v17)
- Chrome / FireFox Browsers (latest)
- Responsive using Media Queries & Bootstrap Material & Antdesign
- Design based Apps

22GE411	PRODUCT DEVELOPMENT LAB - IV (Prototype Phase)	L	Т	Р	С
22GE411	(Common to All Branches)	0	0	2	1

OBJECTIVES:

The Course will enable learners to:

- Analyze the real-time problems in product development from an engineering perspective.
- Implement the DFMA process route to make and assemble the product.
- Test and qualify the product or a system with acquired knowledge.
- Identify the business opportunities for the developed product or process.

The student batch of PDD Lab 3 shall continue their product/ process design work under the guidance of the faculty incharge. All batches should cover the following stages of prototyping work as listed under activities. The faculty incharge shall conduct periodic reviews to endorse the work progress and during the review, the faculty shall provide suggestions/ideas to improvise the project towards completion. An interim report (consisting of BoM, Stages of Prototyping, photographs, proof of work done, etc..) for all listed activities should be submitted by the team during periodic review for evaluation. A final project report is required at the end of the semester and the evaluation is based on an oral presentation in front of the examiner panel constituted by the Head of the Department.

LIST OF ACTIVITIES:

- 1. Develop Engineering BoM for the approved industrial Mock-up from Phase III. Transform the Engineering BoM to develop a Prototype.
- 2. Devise / Plan an economically efficient manufacturing process to make the Prototype and testing.
- 3. Deliberation of the Product / Process outcome Phase IV. Preparation and submission of a project report.

TOTAL: 30 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1 Identify the real-time problems through literature.

CO 2 Develop feasible solutions for the problems.

CO 3 Evaluate the methods to develop solutions to the problem.

CO 4 Analyze the business opportunities for a new product.

CO 5 Prepare a detailed report for the experimental dissemination.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S.No	Equipment Name	Quantity
1	CNC Router	1 No
2	3D Printer	1 No
3	3D Scanner	1 No
4	Laser cutting Machine	1 No
5	Centre lathe	2 Nos
6	Arc welding transformer with cables and holders	2 Nos
7	Plumbing tools	2 Sets
8	Carpentry tools	2 Sets
9	Multimeter	10 Nos
10	Drilling Machine	1 No
11	Solder Stations	5 Sets
12	Desoldering Machine	1 No
13	PCB Milling Machine	1 No
14	Variable Power Supply	1 No
15	Electronic Components like Resistors, Transistors, Diode, Inductor, Capacitor, etc.	10 Sets
16	Personal Desktop Computers	30 Nos
17	Numerical Simulation Tools	30 Licence
18	Test bench: Mech: Digital Micrometre/ Vernier/ Bore gauge/ etc EEE : (Based on the electrical components) ECE : (Based on the electronic components)	5 Nos

22CS411

APTITUDE AND CODING SKILLS – II (Common to All Branches)

L	Т	Р	С
0	0	2	1

OBJECTIVES:

The Course will enable learners to:

- Develop advanced vocabulary for effective communication and reading skills.
- Build an enhanced level of logical reasoning and quantitative skills.
- To develop error correction and debugging skills in programming.
- To apply data structures and algorithms in problem solving.

List of Exercises:

1. English – Phase II

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

2. Logical Reasoning – Phase II

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

3. Quantitative Ability - Phase II

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speed and Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

4. Automata Fix – Phase II

Logical, Compilation and Code reuse

5. Automata - Phase II

Data Structure Concepts: Array and Matrices, Linked list, String processing andmanipulation, Stack/Queue, Sorting and Searching

Advanced Design and Analysis Techniques: Greedy Algorithms, Minimum Spanning Trees, String Matching, Divide and Conquer, Computational Geometry

TOTAL: 30 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Develop advanced vocabulary for effective communication and reading skills.

CO2: Build an enhanced level of logical reasoning and quantitative skills.

CO3: Develop error correction and debugging skills in programming.

CO4: Apply data structures and algorithms in problem solving.

SEMESTER V

22AM501	DEEP LEARNING	L	Τ	Р	С
		3	0	2	4
OBJECTIVES:					
	derstand the basics of deep neural networks.				
	plement deep learning models.				
	borate CNN and RNN architectures of deep neural networks.				
	niliarize auto encoders in neural networks.				
	rn about the deep generative models.				
UNIT I	ply Deep Learning to solve real-world problems. DEEP NETWORKS				9+6
	vating deep learning - Deep feedforward networks - Learning XOR	- G	radi	ent	
U U	Units – Architecture Design – Back Propagation – Regularization –				
	rained Optimization – Under-Constrained Problems – Dataset Augm				
	ni-Supervised Learning – Multi-Task Learning – Early Stopping –				
	gging and Other Ensemble methods – Dropout – Adversarial Trainin				-)
List of Exercises		0.			
	t a simple feed-forward neural network.				
a. Cr	eate a basic network				
	halyze performance by varying the batch size, number of hidden layer	rs. l	earr	ning	rate.
	eate a confusion matrix to validate the performance of your model.	, -	_	8	
	sualize a neural network.				
2. Solve XO	R problem using Multi Layer Perceptron.				
UNIT II	OPTIMIZATION FOR TRAINING DEEP MODELS				9+6
					270
with Adaptive Le Meta Algorithms List of Exercises					ithms
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2. Implement	earning Rates – Approximate Second-Order methods – Optimizatio : Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad.	on S	Strat		rithms es and
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2. Implement UNIT III	earning Rates – Approximate Second-Order methods – Optimizatio : Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR	on S RKS	Strat	egie	rithms es and 9+6
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2. Implement UNIT III Convolution Ope	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S	on S RKS Strue	Strat	egie ed C	rithms es and 9+6 Dutpu
 with Adaptive La Meta Algorithms List of Exercises 1. Implement 2. Implement UNIT III Convolution Ope Data Types 	earning Rates – Approximate Second-Order methods – Optimizatio Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv	RKS Strue Viseo	Strat	egie ed C eatu	s and 9+6 Outpur
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 UNIT III Convolution Ope – Data Types Neuroscientific	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O	RKS Strue Grag	Strat	egie ed C eatu	9+6 Outputres -
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2. Implement UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur	RKS Strue Gra rren	Strat	egie ed C eatur - R etwo	9+6 Outputres - NN - orks -
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur N – Networks - Long Term Dependencies; Leaky Units - Strategies f	RKS Strue Gra rren	Strat	egie ed C eatur - R etwo	9+6 Output res - NN - orks -
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies.	RKS Strue Gra rren	Strat	egie ed C eatur - R etwo	9+6 Output res - NN - orks -
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur N Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies.	RKS Structised Gran	Strat	egie ed C eatu: - R etwo tiple	9+6 Output res - NN - orks -
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur N Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. : t a Recurrent Neural Networks (RNN) and process any sequential da	RKS Structised Gran	Strat	egie ed C eatu: - R etwo tiple	9+6 Output res – NN – orks –
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur I Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. : t a Recurrent Neural Networks (RNN) and process any sequential da b, words or video frames.	RKS Structised Gran	Strat	egie ed C eatu: - R etwo tiple	9+6 Output res – NN – orks –
 with Adaptive La Meta Algorithms List of Exercises 1. Implement 2. Implement UNIT III Convolution Ope Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM and List of Exercises 1. Implement characters 2. Implement 	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur I Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. t a Recurrent Neural Networks (RNN) and process any sequential da s, words or video frames. t RNN with Long Short Term Networks (LTSM).	RKS Structised Gran	Strat	egie ed C eatu: - R etwo tiple	9+6 Output res – NN – orks – time
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur N Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. : t a Recurrent Neural Networks (RNN) and process any sequential da s, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS	RKS Struc Viseo Gra Tren for 1 ta s	Strat	egie ed C eatu: - R etwo tiple as	9+6 9+6 Output res – NN – orks – time
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur N N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur N etworks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. t a Recurrent Neural Networks (RNN) and process any sequential da s, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS medercomplete autoencoders - Regularized autoencoders – Power, Layer	RKS Structure Gran Tren For the tas	Strat	egie ed C eatu: - R etwo tiple as	9+6 9+6 Output res – NN - orks - e time 9+6 Depth
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un - Stochastic enc	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur N Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. t a Recurrent Neural Networks (RNN) and process any sequential da s, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS metercomplete autoencoders - Regularized autoencoders – Power, Layer oders and decoders – Denoising Autoencoders - Learning with	RKS Structure Gran Tren For the tas	Strat	egie ed C eatu: - R etwo tiple as	9+6 Output res – NN – orks – e time 9+6 Depth
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement characters 3. Implement characters 3. Implement characters 3. Implement characters 3. Implement characters 3. Implement characters 3. Implement 3. Implement characters 3. Implement 3. Impl	 Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recurd N – Networks - Long Term Dependencies; Leaky Units - Strategies f Ind Gated RNNs - Optimization for Long Term Dependencies. It a Recurrent Neural Networks (RNN) and process any sequential date, words or video frames. It RNN with Long Short Term Networks (LTSM). AUTOENCODERS mdercomplete autoencoders - Regularized autoencoders – Power, Layer oders and decoders – Denoising Autoencoders - Learning with encoders – Applications of autoencoders. 	RKS Structure Gran Tren For the tas	Strat	egie ed C eatu: - R etwo tiple as	9+6 Output res – NN – orks – e time 9+6 Depth
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un - Stochastic enc contractive Autoe	 Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recurd N etworks - Long Term Dependencies; Leaky Units - Strategies f Ind Gated RNNs - Optimization for Long Term Dependencies. : t a Recurrent Neural Networks (RNN) and process any sequential date, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS ndercomplete autoencoders - Regularized autoencoders – Power, Layer oders and decoders – Denoising Autoencoders - Learning with encoders – Applications of autoencoders. 	RKS Structure Gran Tren For the tas	Strat	egie ed C eatu: - R etwo tiple as	9+6 Output res – NN – orks – e time 9+6 Depth
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un - Stochastic enc contractive Autoes List of Exercises 1. Implement	 arning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational ON – Encoder-Decoder - Sequence to Sequence RNN - Deep Recurd Networks - Long Term Dependencies; Leaky Units - Strategies for Gated RNNs - Optimization for Long Term Dependencies. : t a Recurrent Neural Networks (RNN) and process any sequential date, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS ndercomplete autoencoders - Regularized autoencoders – Power, Laye oders and decoders – Denoising Autoencoders - Learning with encoders – Applications of autoencoders. 	RKS Structure Gran Tren For the tas	Strat	egie ed C eatu: - R etwo tiple as	9+6 Output res – NN – orks – time 9+6 Depth lers –
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un - Stochastic enc contractive Autoen List of Exercises 1. Implement UNIT V	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur I Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. t a Recurrent Neural Networks (RNN) and process any sequential da s, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS mdercomplete autoencoders - Regularized autoencoders – Power, Layer oders and decoders – Denoising Autoencoders - Learning with encoders – Applications of autoencoders. Et different types of autoencoders. DEEP GENERATIVE MODELS	RKS Strucy Strucy Strucy Gra Tren For 1 ta s	Strat	egie ed C eatu: - R etwo tiple as	9+6 Output res – NN – orks – time 9+6 Depth lers – 9+6
with Adaptive La Meta Algorithms List of Exercises 1. Implement a 2. Implement a UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un - Stochastic enc contractive Autoe List of Exercises 1. Implement UNIT V Boltzmann Mach	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur I Networks - Long Term Dependencies; Leaky Units - Strategies f ad Gated RNNs - Optimization for Long Term Dependencies. : t a Recurrent Neural Networks (RNN) and process any sequential da b, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS ndercomplete autoencoders - Regularized autoencoders – Power, Laye oders and decoders – Denoising Autoencoders - Power, Laye oders and decoders – Denoising Autoencoders - Learning with encoders – Applications of autoencoders. : t different types of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I	RKS Strucy Gray rren For 1 ta s er S au	Strat	egie ed C eatu: - R etwo tiple as as	9+6 Output res - NN - orks - e time 9+6 Depth lers - 9+6 tmann
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un - Stochastic enc contractive Autoe List of Exercises 1. Implement UNIT V Boltzmann Mach Machines - Bolt	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur Networks - Long Term Dependencies; Leaky Units - Strategies f and Gated RNNs - Optimization for Long Term Dependencies. t a Recurrent Neural Networks (RNN) and process any sequential da s, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layed oders and decoders – Denoising Autoencoders - Learning with encoders – Applications of autoencoders. t different types of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzm	RKS Struc Viseo Gra rren for 1 ta s er S: au	Strat	egie ed C eatu: - R etwo tiple as	9+6 Dutput res – NN – orks – time 9+6 Depth lers – 9+6 mann ines –
with Adaptive La Meta Algorithms List of Exercises 1. Implement 2 2. Implement 3 2. Implement 4 UNIT III Convolution Ope – Data Types Neuroscientific Bidirectional RN Recursive Neural scales – LSTM an List of Exercises 1. Implement characters 2. Implement UNIT IV Autoencoders: Un - Stochastic enc contractive Autoet List of Exercises 1. Implement UNIT V Boltzmann Mach Machines - Bolt	earning Rates – Approximate Second-Order methods – Optimization Stochastic Gradient Descent Algorithm. Gradient Descent with AdaGrad. CONVOLUTIONAL AND RECURRENT NEURAL NETWOR ration – motivation – Pooling – Infinitely Strong prior – Variants – S – Efficient Convolutional Algorithms – Random or Unsuperv Basis - Deep Learning – Sequence Modelling - Computational O N – Encoder-Decoder - Sequence to Sequence RNN - Deep Recur I Networks - Long Term Dependencies; Leaky Units - Strategies f ad Gated RNNs - Optimization for Long Term Dependencies. : t a Recurrent Neural Networks (RNN) and process any sequential da b, words or video frames. t RNN with Long Short Term Networks (LTSM). AUTOENCODERS ndercomplete autoencoders - Regularized autoencoders – Power, Laye oders and decoders – Denoising Autoencoders - Power, Laye oders and decoders – Denoising Autoencoders - Learning with encoders – Applications of autoencoders. : t different types of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I	RKS Struc Viseo Gra rren for 1 ta s er S: au	Strat	egie ed C eatu: - R etwo tiple as	9+6 Dutpu res - NN orks - time 9+6 Depth lers - 9+6 mann ines -

Generative Models.

List of Exercises:

1. Solve a real world problem using CBM.

TOTAL: 45 + **30** = **75 PERIODS**

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Demonstrate the basics of deep neural networks to solve real world problems.

- CO2: Implement deep learning models.
- CO3: Elaborate CNN and RNN architectures of deep neural networks.
- CO4: Use autoencoders in neural networks.

CO5: Illustrate the various deep generative models.

CO6: Apply deep generative models to solve real world problems.

TEXT BOOKS:

1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.

- 1. Charu C. Aggarwal, "Neural Networks and Deep Learning: A Textbook", Springer International Publishing, 2018.
- 2. Yoav Goldberg, "Neural Network Methods for Natural Language Processing", Synthesis Lectures on Human Language Technologies, Morgan & Claypool publishers, 2017.
- 3. Francois Chollet, "Deep Learning with Python", Manning Publications Co, 2018.
- 4. Josh Patterson, Adam Gibson, "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017.
- 5. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.
- 6. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", John Wiley & Sons Inc., 2007.

22AM502	Data Exploration, Feature Engineering and Visualization	L	T	P	<u>C</u>	
		2	0	2	3	
OBJECTIVES:						
The Course	will enable learners to:					
• To ou	utline exploratory data analysis and the phases involved in data anal	ysis.				
• To di	scuss various statistical techniques for data analysis.					
• To de	emonstrate the basics of feature engineering on different types of da	ta.				
• To pe	erform data analysis and apply visualization techniques.					
• To ap	oply the methods of time series analysis.					
• To fo	ormulate dashboards using different datasets by applying data engine	eerin	ig ai	nd fe	eature	
	ction techniques.		-			
UNIT I	EXPLORATORY DATA ANALYSIS				6+6	
EDA fundamental	ls – Understanding data science – Significance of EDA – Making	ng s	ense	e of	data –	
Comparing EDA v	vith classical and Bayesian analysis – Software tools for EDA.					
Visual Aids For	EDA- Data transformation techniques-merging database, reshap	ping	an	d p	ivoting,	
Transformation te	chniques - Descriptive Statistics-types of kurtosis, quartiles, Grou	aping	g D	atas	ets-data	
aggregation, group	o wise transformation.					
List of Exercise/F	Experiments					
1. Install the fo	•					
2. Perform exploratory data analysis (EDA) on with datasets like email data set. Export all your						
emails as a dataset, import them inside a pandas data frame, visualize them and get different						
insights fron	n the data.					
UNIT II						
Text Data - Visual Data - Feature-based Time-Series Analysis - Data Streams - Feature Selection and						

Evaluation.

List of Exercise/Experiments

- Implement document embeddings for fake news identification. 1.
- Implement feature based representations of time series 2.
- alaction algorithr

3. Implement	feature selection algorithm for data streams						
UNIT III	VISUALIZING DATA	6+6					
0	es of Visualizing Data, Processing-load and displaying data - functions, sketc	0					
scripting, Mapping - Location, Data, two sided data ranges, smooth interpolation of values over time							
- Visualization	of numeric data and non-numeric data.						
List of Exercise	-						
	ext mining on a set of documents and visualize the most important words in a						
	on such as word cloud.						
	ata Analysis and representation on a Map using various Map data sets with Mou	se					
	ffect, user interaction, etc	m d.					
	ographic visualization for multiple datasets involving various countries of the word districts in India etc.	oria;					
UNIT IV	TIME SERIES ANALYSIS	6+6					
	ne series analysis - showing data as an area, drawing tabs, handling mou	• •					
	l Correlations – Preprocessing-introducing regular expression, sophisticated	sorting,					
Scatterplot Maps	-deployment issues.						
List of Exercise							
	me Series Analysis with datasets like Open Power System Data.						
	ne-series model on a given dataset and evaluate its accuracy.						
UNIT V	TREES, HIERARCHIES, AND RECURSION	6+6					
Treemaps - treer	nap library, directory structure, maintaining context, file item, folder item, Netw	orks and					
Graphs-approacl	ning network problems-advanced graph example, Acquiring data, Parsing data.						
List of Exercise	/Experiments						
1. Use a case	study on a data set and apply the various visualization techniques and present an	1					
analysis re	port.						
2. Mini-Proje	ct:- Create a Dashboard for a dataset with a visualization tool.						
	TOTAL: 30+30 = 75 Pl	ERIODS					
OUTCOM	IES:						
Upon comple	ion of the course, the students will be able to:						
	ploratory data analysis and the phases involved in data analysis.						
	ate various statistical techniques for data analysis.						
COS: Present in	e basics of feature engineering on different types of data.						

CO4: Perform data analysis and apply visualization techniques.

CO5: Apply the methods of time series analysis.

CO6: Develop dashboards using different datasets by applying data engineering and feature extraction techniques.

TEXT BOOKS:

- 1. Suresh Kumar Mukhiya and Usman Ahmed, "Hands-on Exploratory Data Analysis with Python", Packt Publishing, First Edition, March 2020.
- 2. Guozhu Dong, Huan Liu, "Feature Engineering for Machine Learning and Data Analytics", First Publication, CRC Press, First edition, 2018.
- 3. Ben Fry, "Visualizing Data", O'reilly Publications, First Edition, 2007.

- 1. Danyel Fisher & Miriah Meyer, "Making Data Visual: A Practical Guide To Using Visualization For Insight", O'reilly publications, 2018.
- 2. Claus O. Wilke, "Fundamentals of Data Visualization", O'reilly publications, 2019.
- 3. EMC Education Services, "Data Science and Big data analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley Publishers, 2015.
- 4. Tamara Munzner, "Visualization Analysis and Design", A K Peters/CRC Press; 1st edition, 2014.
- 5. Matthew O. Ward, Georges Grinstein, Daniel Keim, "Interactive Data Visualization: Foundations, Techniques, and Applications", 2nd Edition, CRC press, 2015.

LIST OF EQUIPMENTS:

1. Systems with Python/R, Tableau Public / PowerBI

22CS511

ADVANCED APTITUDE AND CODING SKILLS - I

L T P C 0 0 2 1

OBJECTIVES:

- To develop vocabulary for effective communication and reading skills.
- To build the logical reasoning and quantitative skills.
- To develop error correction and debugging skills in programming.

LIST OF EXERCISES:

1. English – Phase I Advanced

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

2. Logical Reasoning – Phase I Advanced

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

3. Quantitative Ability - Phase I Advanced

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speed and Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

4. Automata Fix – Phase I

Logical, Compilation and Code reuse

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Develop vocabulary for effective communication and reading skills.

CO2: Build the logical reasoning and quantitative skills.

CO3: Develop error correction and debugging skills in programming.

TOTAL: 30 PERIODS

22 A B # # # 1 1		L	Τ	Р	С			
22AM511	INTERNSHIP AND CAREER READINESS COURSE	0	0	2	1			
OBJECTIVES:								
The Course will enable learners to:								
• To outline the basics of Data Warehouse concepts.								
• To write queries us	sing SQL and NoSQL.							
• To discuss the feat	ures of python.							
	fundamentals of Cloud.							
• To familiarize the	basic algorithms in AI, ML and Prompt Engineering.							
MODULE I	Data Warehouse Concepts, SQL, NoSQL							
Data Warehouse con	cepts: Need for BI, Data Warehouse, Key terminologies related t	o DW	/H ar	chit	ecture:			
	Data Mart, Metadata, DWH Architecture, creating a DWH							
	ata Lake to Data Swamp, SQL Relational Databases, Trans	action	nal F	roc	essing,			
	Vorkload Types, Architectural Challenges, Databricks Evolution				U,			
	mp from source, Data format consistency, Data Quality rules, Tr	uncate	e & L	Joad	l, Load			
	oach, Transform, Mapping, Enriching, Joins, filter, Remove Dup							
• •	ts, EDW Tables, Data Marts							
Variety of ETL Tool	s: Apache Airflow, Datastage, Oracle Data Integrator, SSIS, Ta	ılend,	Had	oop	, AWS			
Glue, Azure Data Fact	ory, Google Cloud Dataflow, Stitch, SAP, Hevo, Qlik, Airbyte			-				
Informatica: Informa	tica Architecture, Informatica PowerCenter & Repository, Infor	rmatic	ea Po	wer	Center			
Designer, Informatica	PowerCenter workflow manager, Informatica PowerCenter wo	rkflov	w mo	nite	or, Run			
Mappings, Workflow								
SQL (Beginner): DQ	L, DDL, DML, Filtering and sorting Data, Grouping and Aggreg	ating	Data	, Joi	ins and			
Subqueries, Window I	Functions, Optimizing SQL queries, Automation.							
SQL (Advanced): Sto	ore Procedure, Trigger, Views, Functions.							
	lamentals and Comparison with SQL							
Power BI: Connecting	g Data Sources and Data Bases, Data Modeling, Creating Calcul	lated I	Field	s in	Power			
BI								
MODULE II	Python, Cloud Fundamentals							
	Variables, Operators, functions, Libraries, Methods, Refactor	ring,	Enur	n, 1	Гuples,			
· · · · · ·	o, filter, reduce, Class & objects, Exceptions, Overloading							
	terators, Modules, Packages, Generators, List, Comprehensions,	Regu	lar ex	pre	ssions,			
	inctions, closures, Decorators							
	WS, AWS Services - Computer, Storage, Database Service,	Netwo	orkin	g S	ervice,			
-	agement tool Service, Developer tool Service			a	•			
-	uting, Services in Azure - Compute, Containers, Databases	, Ide	ntity,	Se	curity,			
Networking, Storage								
1	ng, Benefits of GCP, GCP services, AWS vs Azure vs GCP	1 <i>4</i>	, 1 .	1.1				
• •	earning: Python Data Science Libraries, Numpy, Scipy, Panda		-		Scikit-			
	andas, Sorting, Concatenate, Preprocessing - Time Series Data, V				alrar -			
-	duction, Demand of AI, What is AI, Types of AI, Why python for	AI, P	ythor	1 Pa	скадеѕ			
for AI								
MODULE III	AI, ML, Prompt Engineering		~ ~ ~ ~	1 :4	4			
	e: Artificial intelligence and its types, AI Roadmap, Machine le	arnin	g and	1 1ts	types,			
0	lysis, Classifications in Machine Learning			11.				
	AI vs ML, Classification vs regression, Supervised learning, Un	-			-			
0 1	aring Data, K-Nearest Neighbors, Naive Bayes, Logistic Regres							
Machine, Neural Netw	orks, Tensorflow, K-Means Clustering, Principal Component Au	iarysis	s, r-1	viea	uis and			

PCA Implementations **Prompt Engineering:** Introduction to AI, Linguistics, Language Models, Prompt Engineering Mindset, Zero shot and few shot prompts, AI hallucinations, Vectors/text embeddings.

Generative AI Fundamentals: Generative AI and its use cases, How do LLMS (Large Language Models) work, LLMs generates output for NLP task, LLM model decision criteria, Proprietary models, Fine tuned models, Mixing LLM flavors in workflow, Data privacy, Data security

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Apply the basics of Data Warehouse concepts.

CO2: Apply ETL Tools for Data processing.

CO3: Write queries using SQL and NoSQL.

CO4: Apply the features of python.

CO5: Elaborate the fundamentals of Cloud and various services.

CO6: Demonstrate the basic algorithms in AI, ML and summarize the basics of Prompt Engineering.

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016.
- 2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012
- 3. Jake Vander Plas, "Python Data Science Handbook: Essential Tools for Working with Data", Kindle Edition, 2017
- 4. Elmasri R. and S. Navathe, "Fundamentals of Database Systems", Pearson Education, 7th Edition, 2016.
- 5. Brett Powell , Mastering Microsoft Power BI: Expert techniques for effective data analytics and business intelligence, Packt Publications, 2018.
- 6. Suresh Kumar Mukhiya and Usman Ahmed, "Hands-on Exploratory Data Analysis with Python", Packt publishing, March 2020.
- 7. Ethem Alpaydin, "Introduction to Machine Learning, Adaptive Computation and Machine Learning Series", Third Edition, MIT Press, 2015.
- 8. Nathan Hunter, The Art of Prompt Engineering with Chatgpt: A Hands-On Guide: 3 (Learn AI Tools the Fun Way!), Shroff/Hunter Publishers, 2023
- 9. Joseph Babcock and Raghav Bali, Generative AI with Python and TensorFlow 2, Packt Publications, 2021.

201T927	INDIAN CONSTITUTION	L	Т	P	С		
2011927	INDIAN CONSTITUTION	3	0	0	3		
OBJECTIVES:							
The Course will e	enable learners to:						
• To have some	e knowledge about Indian Constitution.						
• To understand	enable learners to: e knowledge about Indian Constitution.						
 To learn about 	ıt Lok Sabha and Rajya Sabha						
• To have some	e knowledge about Legislative Assembly and Legislative Council						
• To learn about	at Local Self Government						
UNIT I	INTRODUCTION			9			
Meaning and Importan	ce of Constitution, Preamble and Salient Features of the Constitution	1					
UNIT II	FUNDAMENTAL RIGHTS			9			
Fundamental Rights, R	Fundamental Rights, Right to Equality, Right to Freedom, Right against exploitation, Right to freedom of						
religion, Cultural and Educational Rights, Right to Constitutional Remedies and Duties, Directive Principles							
of State Policy.							
UNIT III	LOK SABHA AND RAJYA SABHA			9			
Union Government – I	ok Sabha and Rajya Sabha Composition, Powers, and functions: Th	ne P	resic	lent	, The		

Prime Minister, and Supreme Court: Role Position and Powers/ functions.

UNIT IV LEGISLATIVE ASSEMBLY AND LEGISLATIVE COUNCIL

State Government - Legislative Assembly and Legislative Council: Composition, Powers and functions: The Governor, Chief Minister and High Court: Role, Position and Powers/ functions

UNIT V LOCAL SELF GOVERNMENT

Local self-Government, Panchayat Raj System in India; Election Commission; Public Service Commissions, Role, powers, and function

TOTAL: 45 PERIODS

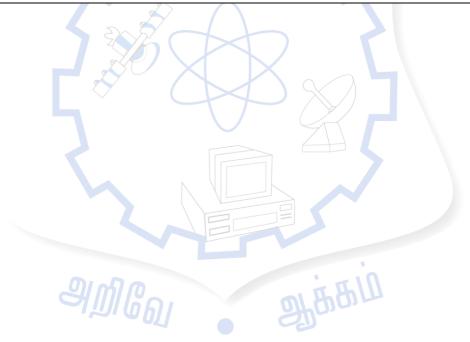
9

9

2009.

OUTCOMES:

At the end of this course, the students will be able to:


CO1: Interpret the knowledge on Indian Constitution.

- CO2: Demonstrate the knowledge gained through fundamental rights concept.
- CO3: Relate the concept of Lok Sabha and Rajya Sabha.
- CO4: Illustrate the concept of Legislative Assembly and Legislative Council.
- CO5: Analyze the concept of Local Self Government.

TEXT BOOK:

1. M V Pylee, An Introduction to The Constitution of India, Vikas Publishing House Pvt. Ltd., 5th Edition, 2007.

- 1. Durga Das Basu, Introduction to the Constitution of India, 19th Edition Reprint
- 2. Sharma, Brij Kishore, "Introduction to the Constitution of India", Prentice Hall of India, 7th Edition, 2015.

22AM601	I AUTOMATA THEORY AND COMPILER DESIGN –		T	P	C
OBJECTIVES:		3	0	0	3
	as the fundamental concents of automate theory				
	ce the fundamental concepts of automata theory.				
	and deterministic and non-deterministic finite automata.				
	te on Regular Expressions and Grammars.				
	ce Push down Automata and Turing Machines.				
	ce the major concepts of language translation and compiler design.				
To elabora	te the code optimization and code generation in compiler design.				
UNIT I	INTRODUCTION TO AUTOMATA THEORY				9
Introduction to F	inite Automata: Structural Representations, Automata and Complex	ity,	the	Cer	ntral
Concepts of Autor	nata Theory – Alphabets, Strings, Languages, Problems.				
	Finite Automata: Formal Definition, an application, Text Search, Fi	inite	e A	utor	nata
with Epsilon-Tran					
Deterministic Fir	ite Automata: Definition of DFA, How A DFA Process Strings, The	lan	igua	age	of
	of NFA with €-transitions to NFA without €-transitions. Conversion of				
UNIT II	REGULAR EXPRESSIONS AND CONTEXT FREE GRAMMA	ARS	5		9
Regular Expressi	ons: Finite Automata and Regular Expressions, Applications of Regu	lar	Ext	ores	sions,
	or Regular Expressions, Conversion of Finite Automata to Regular Ex				,
-	a for Regular Languages: Statement of the pumping lemma, App	-			of the
Pumping Lemma.					
	rammars: Definition of Context-Free Grammars, Derivations Usi	ng	a (Grar	nmar.
	tmost Derivations, the Language of a Grammar, Parse Trees, Ambigu	0			
and Languages.					
UNIT III	PDA AND TURING MACHINES				9
					-
Push Down Auto)A	Ea	niva	alence
	mata: Definition of the Pushdown Automaton, the Languages of a PL	DA,	Eq	uiva	alence
of PDA and CFG'	mata: Definition of the Pushdown Automaton, the Languages of a PL s, Acceptance by final state		-		
of PDA and CFG' Turing Machines	mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state : Introduction to Turing Machine, Formal Description, Instantaneous		-		
of PDA and CFG' Turing Machines language of a Turi	mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state : Introduction to Turing Machine, Formal Description, Instantaneous ng machine.		-		n, The
of PDA and CFG' Turing Machines language of a Turi UNIT IV	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS 		-		
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, 	des	crip	otior	n, The 9
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition 	des	crip	otior	n, The 9
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis Lexical-Analyzer	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, 	deso of '	crip	tior	n, The 9 , The
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis:	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top 	deso of ' -Do	crip Tok	otion cens Pa	n, The 9 , The .rsing,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR 	deso of ' -Do	crip Tok	otion cens Pa	n, The 9 , The .rsing,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR 2. 	deso of ' -Do	crip Tok	otion cens Pa	n, The 9 , The rsing, Parser
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION 	deso of ' -Do Pa	Crip Tok wn rsei	ens Pa s, I	n, The 9 , The rsing, Parser 9
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple complexity. 	dese of 7 -Do Par	Crip Tok wn rsei	erat	n, The 9 , The rsing, Parser 9 or,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation 	dese of 7 -Do Par	Crip Tok wn rsei	erat	n, The 9 , The rsing, Parser 9 or,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state i: Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, : The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, : Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation ation, the principle sources of optimization. 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rsing, Parser 9 or, locks,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rsing, Parser 9 or, locks,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine. LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation ation, the principle sources of optimization. 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rsing, Parser 9 or, locks,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine. LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation ation, the principle sources of optimization. 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rsing, Parser 9 or, locks,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation ation, the principle sources of optimization. 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rsing, Parser 9 or, locks,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design cont	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation ation, the principle sources of optimization. TOTAI 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rsing, Parser 9 or, locks,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design conte CO3: Use PDA an	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & flow graphs, DAG representation tion, the principle sources of optimization. TOTAI course, the students will be able to: eterministic and non-deterministic finite automata. ext free grammars for formal languages using regular expressions. ad Turing Machines for recognizing context-free languages. 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rrsing, Parser 9 or, locks,
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design contt CO3: Use PDA an CO4: Design a lex	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & filow graphs, DAG representation ation, the principle sources of optimization. TOTAI course, the students will be able to: eterministic and non-deterministic finite automata. ext free grammars for formal languages using regular expressions. and Turing Machines for recognizing context-free languages. 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rrsing Parser 9 or, locks
of PDA and CFG' Turing Machines language of a Turi UNIT IV Introduction: The Lexical Analysis: Lexical- Analyzer Syntax Analysis: Bottom- Up Pars Generators YACC UNIT V Code generation Introduction to co Peephole optimiza OUTCOMES: At the end of this CO1: Construct de CO2: Design contt CO3: Use PDA an CO4: Design a lex CO5: Design synta	 mata: Definition of the Pushdown Automaton, the Languages of a PE s, Acceptance by final state Introduction to Turing Machine, Formal Description, Instantaneous ng machine . LEXICAL AND SYNTAX ANALYSIS e structure of a compiler, The Role of the Lexical Analyzer, Input Buffering, Recognition Generator Lex, Introduction, Context-Free Grammars, Writing a Grammar, Top ing, Introduction to LR Parsing: Simple LR, More Powerful LR CODE GENERATION AND OPTIMIZATION and optimization: Issues in the design of code generator, a simple code optimization, Basic blocks & filow graphs, DAG representation ation, the principle sources of optimization. TOTAI course, the students will be able to: eterministic and non-deterministic finite automata. ext free grammars for formal languages using regular expressions. and Turing Machines for recognizing context-free languages. 	of ' -Do Par	Tok wn rser gen basi	cens Pa rs, I erat	n, The 9 , The rrsing Parser 9 or, locks

TEXT BOOKS:

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, 3rd Edition, Pearson Education, 2008.
- 2. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers Principles, Techniques and Tools", Second Edition, Pearson, 2013.

- 1. K.L.P Mishra and Chandrashekaran, Theory of Computer Science Automata languages and computation, 3rd Edition, PHI, 2007.
- 2. Elain Rich, "Automata, Computability and complexity", 1st Edition, Pearson Education, 2018.
- 3. Peter Linz, "An introduction to Formal Languages and Automata", Jones and Bartlett Publishers, 6th Edition, 2016.
- 4. K Muneeswaran, "Compiler Design", Oxford University Press, 2013.
- 5. John C Martin, Introduction to Languages and The Theory of Computation, TMH, 4th Edition, 2010.

22AM602	FOUNDATION OF REINFORCEMNT LEARNING AND ENSEMBLE METHODS	L 3	Т 0	P 2	C 4			
OBJECTIV	ZES:							
The Course	will enable learners to:							
• Und	erstand the elements of Reinforcement Learning							
	ement Bandit Problems and Action Value Methods							
-	erstand the basic concepts of Ensemble Learning							
Anal	yze Bagging and Boosting techniques							
Anal	yze the performance of Advanced Ensemble Methods							
UNIT I	INTRODUCTION				9+6			
History of R Lab Exerci 1. Implement through 2. Implement	through a simple grid world environment.Implement a Deep Q-Network (DQN) and apply it to a simple game environment, understanding the benefits and limitations of using deep learning for reinforcement learning tasks.							
	BANDIT PROBLEMS AND ACTION-VALUE METHODS				9+6			
Instruction- Reinforceme Lab Exerci	ed Bandit Problem- Action-Value Methods- Softmax Action Selection- E Incremental Implementation- Tracking a Nonstationary Problem- Optimist ent Comparison- Associative Search Framework ses ent the basic concepts of the multi-armed bandit problem, explore different	tic In	itial	Val	ues-			
	g actions, and analyze the performance of these strategies.		Juan	56100	101			
	ent policy evaluation and policy improvement in a finite Markov Decision mamic programming methods.	1 Pro	ocess	s (M	DP)			
UNIT III	INTRODUCTION TO ENSEMBLE METHODS				9+6			
 Basic Concepts -Popular Learning Algorithms- Evaluation and Comparison- Ensemble Methods - Applications of Ensemble Methods. Lab Exercises 1. Implement and understand the Stacking ensemble method by combining multiple models to improve predictive performance. 2. Implement a Random Forest algorithm and tune its hyper parameters to achieve optimal performance. 								
UNIT IV	BOOSTING AND BAGGING ALGORITHMS	<u></u>			9+6			
Introduction	Introduction to Boosting Algorithms– AdaBoost Algorithm –Examples-Theoretical Issues -Multiclass							

Extension – Noise Tolerance - XGBoost - Examples and Issues – Introduction to Bagging Algorit	hm
Examples and Issues – Random tree Ensembles -Combination Methods - Averaging – Voti	
Combining by learning – Other Combination methods – Relevant methods	ng
Lab Exercises	
1. Implement the AdaBoost algorithm, and to analyze its performance on a simple dataset.	
2. Implement the bagging algorithm using random forests, and to analyze its performance on a data	aset.
UNIT V ADVANCED LEARNING TECHNIQUES	9+6
Semi-supervised Learning-Active Learning- Cost-Sensitive Learning- Class Imbalanced Learning	
Lab Exercises	
1. Implement a semi-supervised learning algorithm using self-training to improve classific	ation
performance with limited labeled data.	
2. Implement an active learning algorithm using uncertainty sampling to select the most informative	e data
points for labeling.	
TOTAL: 75 PER	IODS
OUTCOMES:	
At the end of this course, the students will be able to:	
CO1: Explain the fundamental components of Reinforcement Learning	
CO2: Implement Tabular Solution Methods	
CO3: Explain the basic concepts of Ensemble Learning	
CO4: Implement Bagging and Boosting Algorithm and analyze its performance	
CO5: Analyze Advanced Ensemble Methods	
TEXT BOOKS:	
1. Sutton R. S. and Barto A. G., "Reinforcement Learning: An Introduction", MIT	
Press, Second Edition, 2020.	
2. Zhi-Hua Zhou. Ensemble Methods Foundations and Algorithms, 2012 First Edition	
Chapman & Hall/CRC Machine Learning & Pattern Recognition – Unit 4 & 5	,
Chapman & Han/CKC Machine Learning & Fattern Recognition – Onit 4 & 3	
REFERENCES:	
1. Kevin Murphy, "Machine Learning - A Probabilistic Perspective", MIT press, 2012.	
1. Kevin Murphy, Machine Leanning - A Flobabilistic Felspective , Mill pless, 2012.	

- 2. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 3. Aurelien Geron" Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow".

22CS602	UDJECT URIENTED SUFTWAR
2205002	(Lab Integrated)
OBJECTIVES:	
The Course will enable l	earners to: 0 h //

• Explain software engineering principles and activities involved in building large software programs.

OBJECT ORIENTED SOFTWARE ENGINEERING

L

2

TP

0 2 3

С

6+6

- Describe the process of requirements gathering, analysis and unified modelling
- Illustrate the object oriented design process.
- Analyse various traditional and object oriented testing methods
- Apply estimation techniques, schedule project activities and compute pricing.
 UNIT I PRODUCT AND PROCESS

	I RODUCI AND I ROCESS	UTU						
The Nature of Software – Defining the Discipline – The Software Process – Process models – Prescriptive								
Process Models – Product	t and Process – Agility and Process – What is an Agile Process? - Scru	um – Öther						
Agile Frameworks – Kan	aban – DevOps							

List of Exercise/Experiments:

1. Identify a software system that needs to be developed.

2. Document the Software Requirements Specification (SRS) for the identified system.

UNIT II REQUIREMENTS AND UNIFIED MODELING

Requirements Engineering – Establishing the Groundwork: Nonfunctional Requirements – Requirements Gathering – Developing Use Cases – Negotiating and Validating Requirements.

6+6

6+6

6+6

6+6

Unified Modeling Language – Introduction – Static and Dynamic Models – Modelling – Introduction to the UML – UML Diagrams – UML Class Diagrams – Use-Case Diagram – UML Dynamic Modelling.

List of Exercise/Experiments:

- 1. Identify use cases and develop the Use Case model.
- 2. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.

UNIT III OBJECT ORIENTED ANALYSIS AND DESIGN

Object oriented Analysis process – Business object Analysis – Use-case driven OOA – Business process modelling – Use case model. Design Concepts – Design Process – Design Concepts – Design Model: Design Principles and Design Elements. Architectural Design – Designing class-based components -Conducting Component Level Design – User Interface Analysis and Design – Pattern-Based Software Design.

List of Exercise/Experiments:

1. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams

2. Draw relevant State Chart and Activity Diagrams for the same system

UNIT IV	SOFTWARE TESTING

Component Level: A Strategic Approach to Software Testing – White-Box Testing – Black Box Testing - Object Oriented Testing Integration Level: Integration Testing – AI and Regression Testing – Integration Testing in the OO Context Specialized Testing for Mobility: Web application Testing – Web Testing Strategies – Security Testing – Performance Testing – Real time Testing – Testing AI Systems – Testing Virtual Environments.

List of Exercise/Experiments:

- 1. Implement the system as per the detailed design
- 2. Test the software system for all the scenarios identified as per the usecase diagram

UNIT V SOFTWARE PROJECT MANAGAMENT

Software Metrics and Analytics: Software Measurement – Product Metrics. Creating a Viable Software Plan: The Project Planning Process – Software Scope and Feasibility – Decomposition and Estimation Techniques – Project Scheduling. Risk Management: Reactive Versus Proactive Risk Strategies – Risk Identification – Risk Projection – The RMMM Plan.

Software Process Improvement: The SPI Process – The CMMI

List of Exercise/Experiments:

- 1. Improve the reusability and maintainability of the software system by applying appropriate design patterns.
- 2. Implement the modified system and test it for various scenarios

SUGGESTED DOMAINS FOR MINI-PROJECT:

- 1. Passport automation system.
- 2. Book bank
- 3. Exam registration
- 4. Stock maintenance system.
- 5. Online course reservation system
- 6. Airline/Railway reservation system
- 7. Software personnel management system
- 8. Credit card processing
- 9. E-book management system
- 10. Recruitment system

- 11. Foreign trading system
- 12. Conference management system
- 13. BPO management system
- 14. Library management system
- 15. Student information system

TOTAL: 30 + 30= 60 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

CO1: Understanding Software and Software Processes

- **CO2:** Analyze and gather software requirements.
- **CO3: Use** UML to **create** static and dynamic models
- **CO4: Design** software components using object-oriented principles.

CO5: Apply various software testing strategies.

CO6: Develop software projects effectively.

TEXT BOOKS:

- 1. Roger S. Pressman, "Software Engineering: A Practitioner's Approach", McGraw Hill International Edition, Nineth Edition, 2020.
- 2. Ali Bahrami, "Object Oriented Systems Development", McGraw Hill International Edition, 2017.

REFERENCES:

- 1. Micheal Blalh and James Rumbaugh, Object Oriented Modeling and Design with UML, 2nd edition Pearson 2013.
- 2. Ian Sommerville, "Software Engineering", Tenth Edition, Pearson Education, 2016.
- 3. Ivar Jacobson, Harold Bud Lawson, Pan-Wei Ng, Paul E. McMahon, Michael Goedicke, "The Essentials of Modern Software Engineering", Morgan & Claypool Publishers, 2019.
- 4. Booch, G, Jacobson I, Rumbaugh J, "The Unified Modeling Language User Guide", Addison Wesley, 2008.
- 5. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language", 3rd edition, Addison Wesley, 2003.

LIST OF EQUIPMENTS:

ArgoUML, Visual Paradigm

22CS611	ADVANCED APTITUDE AND CODING SKILLS - II

L	Τ	Р	С
0	0	2	1

OBJECTIVES:

- To develop advanced vocabulary for effective communication and reading skills.
- To build an enhanced level of logical reasoning and quantitative skills.
- To develop error correction and debugging skills in programming.
- To apply data structures and algorithms in problem solving.

LIST OF EXERCISES:

1.English – Phase II Advanced

Vocabulary: Synonyms, Antonyms, Grammar: Subject-Verb Agreement, Tenses and Articles, Prepositions and Conjunctions, Speech and Voices, Comprehension: Inferential and Literal Comprehension, Contextual Vocabulary, Comprehension ordering

2. Logical Reasoning – Phase II Advanced

Deductive Reasoning: Coding deductive logic, Directional sense, Blood relations, Objective Reasoning, Selection decision tables, Puzzles, Inductive reasoning: Coding pattern and Number series pattern recognition, Analogy and Classification pattern recognition, Abductive Reasoning: Logical word sequence, Data sufficiency

3. Quantitative Ability - Phase II Advanced

Basic Mathematics: Divisibility, HCF and LCM, Numbers, decimal fractions and power, Applied Mathematics: Profit and Loss, Simple and Compound Interest, Time, Speed and Distance, Engineering Mathematics: Logarithms, Permutation and Combinations, Probability

4. Automata Fix – Phase II

Logical, Compilation and Code reuse

5. Automata - Phase II

Data Structure Concepts: Array and Matrices, Linked list, String processing and manipulation, Stack/Queue, Sorting and Searching Advanced Design and Analysis Techniques: Greedy Algorithms, Minimum Spanning Trees, String Matching, Divide and Conquer, Computational Geometry

TOTAL: 30 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Develop advanced vocabulary for effective communication and reading skills.

CO2: Build an enhanced level of logical reasoning and quantitative skills.

CO3: Develop error correction and debugging skills in programming.

CO4: Apply data structures and algorithms in problem solving.

NGINEERING COLLEGE

SEMESTER – VII

Professional Ethics

		L	Τ	Ρ	С	
	PREFESSIONAL ETHICS	3	0	0	3	
OBJECTIVES:						
• To fam	niliarize with Engineering Ethics and Human Values.					
• To imp	part knowledge on codes of ethics, safety, responsibilities and rights of	engi	neer	s.		
To giv	e awareness on global issues related to environmental ethics, compute	er eth	nics,	wea	pons	
0	pment and corporate social responsibility.				1	
UNIT I	HUMAN VALUES				9	
Morals, values	s and Ethics – Integrity – Work ethic – Service learning – Civic virtue –	Resp	ect f	for o	thers	
	cefully - Caring - Sharing - Honesty - Courage - Valuing time					
	- Empathy - Self-confidence - Character - Spirituality - Introduct					
meditation for professional excellence and stress management.						
	· · · · · · · · · · · · · · · · · · ·					
UNIT II	ENGINEERING ETHICS				9	
UNIT II		diler	nma	IS —	9	
UNIT II Senses of 'Eng	ENGINEERING ETHICS				-	
UNIT II Senses of 'Eng Moral Autono	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral	ersy –	- Mo	odels	-	
UNIT II Senses of 'Eng Moral Autono	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio	ersy –	- Mo	odels	-	
UNIT II Senses of 'Eng Moral Autono professional re	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio	ersy –	- Mo	odels	-	
UNIT II Senses of 'Eng Moral Autono professional ro Ethical Theori UNIT III	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio ies.	ersy – on – U	- Mo Uses	odels of	s of 9	
UNIT II Senses of 'Eng Moral Autono professional ro Ethical Theori UNIT III Engineering as	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio ies. ENGINEERING AS SOCIAL EXPERIMENTATION	ersy – on – U	- Mo Uses	odels of	s of 9	
UNIT II Senses of 'Eng Moral Autono professional ro Ethical Theori UNIT III Engineering as	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio ies. ENGINEERING AS SOCIAL EXPERIMENTATION s Experimentation – Engineers as responsible Experimenters – Codes of	ersy – on – U	- Mo Uses	odels of	s of 9	
UNIT II Senses of 'Eng Moral Autono professional ro Ethical Theori UNIT III Engineering as Balanced Outl UNIT IV	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio ies. ENGINEERING AS SOCIAL EXPERIMENTATION s Experimentation – Engineers as responsible Experimenters – Codes of look on Law - The Challenger Case Study.	ersy – on – U of Eth	- Mo Jses nics	odels of - A	9 9	
UNIT II Senses of 'Eng Moral Autono professional ro Ethical Theori UNIT III Engineering as Balanced Outl UNIT IV Safety and Ris	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio ies. ENGINEERING AS SOCIAL EXPERIMENTATION s Experimentation – Engineers as responsible Experimenters – Codes of look on Law - The Challenger Case Study. SAFETY, RESPONSIBILITIES AND RIGHTS	ersy – U on – U of Eth ucing	- Mc Jses nics	odels of - A	9 9 Case	
UNIT II Senses of 'Eng Moral Autono professional ro Ethical Theori UNIT III Engineering as Balanced Outl UNIT IV Safety and Ris Studies: Cher	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio ies. ENGINEERING AS SOCIAL EXPERIMENTATION s Experimentation – Engineers as responsible Experimenters – Codes of look on Law - The Challenger Case Study. SAFETY, RESPONSIBILITIES AND RIGHTS sk – Assessment of Safety and Risk – Risk Benefit Analysis and Reduction	ersy – on – U of Eth ucing	- Mc Jses nics g Ris Barg	odels of - A sk - ainin	s of 9 9 Case ng –	
UNIT II Senses of 'Eng Moral Autono professional re Ethical Theori UNIT III Engineering as Balanced Outl UNIT IV Safety and Ris Studies: Cher Confidentiality	ENGINEERING ETHICS gineering Ethics' – Variety of moral issues – Types of inquiry – Moral omy – Kohlberg's theory – Gilligan's theory – Consensus and Controve oles - Theories about right action – Self-interest – Customs and Religio ies. ENGINEERING AS SOCIAL EXPERIMENTATION s Experimentation – Engineers as responsible Experimenters – Codes of look on Law - The Challenger Case Study. SAFETY, RESPONSIBILITIES AND RIGHTS sk – Assessment of Safety and Risk – Risk Benefit Analysis and Reduced rnobyl and Bhopal Disasters - Respect for Authority – Collection	ersy – on – U of Eth ucing	- Mc Jses nics g Ris Barg	odels of - A sk - ainin	s of 9 9 Case ng –	

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

- **CO1:** Summarize the importance of human values in work place.
- **CO2:** Discuss the senses of engineering ethics, moral dilemmas, moral autonomy and uses of ethical theories.
- **CO3:** Describe the role of engineers as responsible experimenters and necessity of codes of ethics in engineering.
- **CO4:** Explain safety, risk, responsibilities and rights in the society.
- **CO5:** Analyze the global issues related to environmental ethics, computer ethics, weapons development and the role of engineers as expert witnesses and advisors.

CO6: Apply ethics in society and discuss the ethical issues related to engineering.

TEXT BOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2017.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2013.

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2012.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2018.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2017.
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2008.

22AM701 NATURAL LANGUAGE PROCESSING		P C						
22ANI/01 NATURAL LANGUAGE	3 0	2 4						
OBJECTIVES:								
• To learn the fundamentals of natural language processing								
• To discuss word level analysis.	THE THE							
• To discuss the different language models.								
• To understand the significance of syntactic and	l semantic analysis.							
• To learn discourse algorithms and various lexion	cal resources.							
UNIT I INTRODUCTION		9+6						
Natural Language Processing - Ambiguities in NLP - I	Regular Expressions – Words – Corpo	ora - Text						
Normalization, Minimum Edit Distance.								
Lab Exercises:								
1. NLTK basic Tasks.								
a. Tokenization								
b. Stemming								
c. Lemmatization								
2. Identify the Patterns from given the given text de	ocument using Regular Expressions.							
UNIT II WORD LEVEL ANALYSIS		9+6						

Morphological Analysis – Morphological Parsing - Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based - HMM - Transformation-based tagging.

Lab Exercises:

- 1. Implement POS tagging using Hidden Markov Models.
- 2. Write a program to compute unsmoothed unigram and bigrams.

UNIT III LANGUAGE MODELS

9+6

10+6

8+6

TOTAL: 30 + 45 = 75 PERIODS

Markov Chains – Hidden Markov Model – Forward Algorithm – Decoding: Viterbi Algorithm – Training HMMs – Maximum Entropy Models – Maximum Entropy Markov Models.

Lab Exercises:

- 1. Identify semantic relationships between words and sentences using different measures.
- 2. Implement Sequence Classification using Support Vector Machine model.
- 3. Implement Named Entity Recognition using ML Models.
- UNIT IV SYNTACTIC AND SEMANTIC ANALYSIS

Context-Free Grammars - Grammar rules - Treebanks - Normal Forms for grammar – Finite-state – CFG - Dependency Grammar – Parsing with CFG – Search – Ambiguity - Syntax-Driven Semantic analysis – Semantic Augmentations - Semantic attachments – Unification based approaches to Semantic Analysis – Semantic Attachments – Integrating Semantic Analysis to Early Parser – WordNet.

Lab Exercises:

- 1. Implement Word Embedding using Word2vec, FastText, Glove model
- 2. Implement Transformer models using Pytorch.

UNIT V APPLICATIONS OF NLP

Information Extraction - Question Answering and Summarization – Dialogue and Conversational Agent - Machine Translation.

Lab Exercises:

- 1. Implement Chatbot.
- 2. Implement Neural Machine Translation using Encoder –Decoder model.

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Elaborate the fundamentals of natural language processing.

CO2: Perform word level analysis in NLP.

CO3: Implement different ML models for NLP.

CO4: Analyze the syntax and semantics using various methods.

CO5: Analyze text at the word level.

CO6: Apply NLP to solve real-world problems.

TEXT BOOKS:

1. Daniel Jurafsky, James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech", Pearson Publication, Second Edition, 2019.

- 1. Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", First Edition, O'Reilly Media, 2009.
- 2. Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.
- 3. Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.
- 4. Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman and Hall/CRC Press, 2010.
- 5. Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

22 A R #702	COMDUTED VISION	L	Т	Р	С
22AM702	COMPUTER VISION	3	0	0	3
To leaTo beTo de	ES: derstand the fundamental concepts related to Image formation and pro- rn feature detection, matching and detection. come familiar with feature based alignment and motion estimation. velop skills on 3D reconstruction. derstand image based rendering and recognition.	cessi	ing.		
UNIT I	INTRODUCTION TO IMAGE FORMATION AND PROCESS	ING	r		9
digital camera	sion - Geometric primitives and transformations - Photometric image a - Point operators - Linear filtering - More neighborhood operators - F d wavelets - Geometric transformations - Global optimization.				
UNIT II	FEATURE DETECTION, MATCHING AND SEGMENTATIO	N			9
	tches - Edges - Lines - Segmentation - Active contours - Split and me ding - Normalized cuts - Graph cuts and energy-based methods.	erge	- M	ean	shi
UNIT III	FEATURE-BASED ALIGNMENT & MOTION ESTIMATION				9
motion.	3D RECONSTRUCTION				9
UNIT IV	2D DECONSTRUCTION				9
Shape from	X - Active range finding - Surface representations - Point-based presentations - Model-based reconstruction - Recovering texture maps				ions
Shape from	X - Active range finding - Surface representations - Point-based				ions
Shape from Volumetric re UNIT V View interpo Video-based	X - Active range finding - Surface representations - Point-based presentations - Model-based reconstruction - Recovering texture maps IMAGE-BASED RENDERING AND RECOGNITION lation Layered depth images - Light fields and Lumi graphs - Envir rendering-Object detection - Face recognition - Instance recogni Context and scene understanding- Recognition databases and test sets.	conn tion	l alb nent -	edos mat Cate	ions sos 9 ttes gor
Shape from Volumetric re UNIT V View interpo Video-based	X - Active range finding - Surface representations - Point-based epresentations - Model-based reconstruction - Recovering texture maps IMAGE-BASED RENDERING AND RECOGNITION lation Layered depth images - Light fields and Lumi graphs - Envir rendering-Object detection - Face recognition - Instance recogni Context and scene understanding- Recognition databases and test sets. TOTAL	conn tion	l alb nent -	edos mat Cate	ions sos 9 ttes gor

2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Person Education, Second Edition, 2015

REFERENCES:

- 1. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
- 2. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006
- 3. E. R. Davies, Computer and Machine Vision, Fourth Edition, Academic Press, 2012.

22AM711		MLOps		Т	Р	С					
				0	2	1					
O	OBJECTIVES:										
	To design and implement a Machine Learning Project.										
	• To perform data engineering and ML model engineering and develop a model.										
	To perform model testing and validation.										
		eploy a ML model using CI/CD pipeline.									
		XERCISES:									
1.		messy customer purchase data (wrangling), compress for efficienc	y, and	visua	lize b	uying					
		improve product recommendations.									
2.		computer vision model to classify different types of flowers in	imag	es usi	ng tra	insfer					
	learning,	evaluating with accuracy and confusion matrix.									
3.	Build a t	ext classifier to distinguish between product reviews and custome	r sup	port ti	ckets	using					
	a pre-trai	ned NLP library, evaluating with F1-score.									
4.	Build a r	ecommendation system using collaborative filtering to suggest me	ovies	to use	rs bas	ed on					
	their wat	ch history and ratings provided by similar viewers.									
5.	Train an	image classifier (cifar-10) using a CNN with MLflow to opti	mize	hyper	paran	neters					
	(learning	rate, epochs) for maximizing accuracy.									
6.	Deploy a	simple web application in a Docker container on Kubernetes, colle	ecting	user i	ntera	ctions					
	with File	beat and visualizing them in Kibana dashboards.									
7.	Build a	CI/CD pipeline in Github Actions to automate training and dep	loyme	ent of	a ma	chine					
	learning	model (e.g., image classifier) using Jenkins, including model profi	ling w	rith a p	orofile	er tool					
	to identif	y performance bottlenecks.	-	-							
8.	Deploy t	wo versions of a web application (A/B test) with Google Optimize,	using	a Car	nary p	attern					
	for initia	l risk assessment and measuring conversion rates for each version			• •						
9.		sample web application (e.g., flask app) to a cloud platform (AW)		onitor	applic	cation					
	health m	etrics (CPU, memory) with Cloudwatch, and visualize them in Graf	ana C	loud	lashbo	oards.					
		ΤC	тлт	• 30	DED	IODS					
	UTCOME		IAL	. 30	ILK						
		f this course, the students will be able to:									
		n and implement a Machine Learning Project.									
	0	data engineering and ML model engineering and develop a mode	1.								
		model testing and validation.	-								
		and Deploy a ML model using CI/CD pipeline.									

LIST OF EQUIPMENTS:

20IT917	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	PC
OBJECTIV		
	will enable learners to:	
• Fa	acilitate the students with the concepts of Indian traditional knowledge and to make	them
	nderstand the importance of roots of knowledge system.	
• N	lake the students understand the traditional knowledge and analyse it and apply it to	their
da	ay-to-day life.	_
UNIT I	INTRODUCTION TO TRADITIONAL KNOWLEDGE	9
	ional knowledge, nature and characteristics, scope and importance, kinds of tradi	
knowledge,	Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indig	enous
knowledge, t	raditional knowledge Vs western knowledge traditional knowledge.	
UNIT II	PROTECTION OF TRADITIONAL KNOWLEDGE	9
	r protecting traditional knowledge Significance of TK Protection, value of TK in g	global
economy, Ro	ble of Government to harness TK.	
UNIT III	LEGAL FRAMEWORK AND TK	9
The Schedule	ed Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act,	2006,
Plant Varieti	es Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversit	y Act
2002 and Ru	les 2004, the protection of traditional knowledge bill, 2016.	
UNIT IV	TRADITIONAL KNOWLEDGE AND INTELLECTUAL PROPERTY	9
Systems of tr	aditional knowledge protection, Legal concepts for the protection of traditional knowl	edge,
Patents and t	raditional knowledge, Strategies to increase protection of traditional knowledge.	
UNIT V	TRADITIONAL KNOWLEDGE IN DIFFERENT SECTORS	9
Traditional k	nowledge and engineering, Traditional medicine system, TK in agriculture, Tradi	tional
societies dep	end on it for their food and healthcare needs, Importance of conservation and sustai	nable
development	of environment, Management of biodiversity, Food security of the country and prote	ection
of TK.		
	TOTAL: 45 PERI	ODS
OUTCOME		
At the end o	f this course, the students will be able to:	
CO1: Illustra	te the concepts of Indian traditional knowledge.	
11.	the concept of protection of traditional knowledge.	
	the legal framework and traditional knowledge.	
-	et the concept of traditional knowledge and intellectual property.	
	te and apply traditional knowledge to their day-to-day life.	
TEXT BOO		
	Jha, Traditional Knowledge System in India, Atlantic Publishers, 2002.	
		1 0
-	Kapoor, Michel Danino, Knowledge Traditions and Practices of India, Central Boa	ard of
Secor	ndary Education, 2012.	

PROFESSIONAL ELECTIVE VERTICAL I – DATA SCIENCE AND ANALYTICS

22AM901

DATA SCIENCE USING PYTHON

	(Lab Integrated)	2	0	2	3
OBJECTIVES:					
The Course w	vill enable learners to:				
• To learn the	fundamentals of Data Science.				
• To experime	nt and implement python libraries for data science Learn the tools	and	pacl	cag	es in
Python for D	Pata Science.				
• To apply and	l implement basic classification algorithms				
• To apply clus	stering and outlier detection approaches.				
• To present an	nd interpret data using visualization libraries in Python				
UNIT I	INTRODUCTION				6+6
Data Science: Benef	its and uses – facets of data - Data Science Process: Overview – D	efin	ing 1	rese	earch
	lata – data preparation - Exploratory Data analysis – build the mo				
	g applications - Data Mining - Data Warehousing – Basic statistica		-		-
Data.			-		
List of Exercise/Ex					
1. Download, in	nstall and explore the features of R/Python for data analytics				
	lling Anaconda				
Basic	Operations in Jupyter Notebook				
Basic	Data Handling				
UNIT II	PYTHON LIBRARIES FOR DATA SCIENCE				6+6
Introduction to Nur	npy - Multidimensional Ndarrays – Indexing – Properties – C	onst	ants	_	Data
and dimension the reshaping perform the of 2. Working with Operations, I data like Nor	h Numpy arrays - Creation of numpy array using the tuple, Determine on of the array, Manipulation with array Attributes, Creation of Su g of the array along the row vector and column vector, Create concatenation among the arrays. h Pandas data frames - Series, DataFrame , and Index, Implement the Data indexing operations like: loc, iloc, and ix, operations of hand he, Nan, Manipulate on the operation of Null Vaues (is null(), not	b arr Two ne Da lling	ay, 1 arr ata S the	Peri ays elec mis	form and ction
	Statistics operation for the data (the sum, product, median, minimung min, arg max etc.).	n anc	d ma	xin	num,
	set compute the mean ,standard deviation, Percentile.				
UNIT III	CLASSIFICATION				6+6
	ecision Tree Induction – Bayes Classification Methods – Rule-Base	ed C	lassi	fic	
– Model Evaluation		Ju C	14001		401011
	etworks – Classification by Backpropagation – Support Vect	tor 1	Mac	hin	es –
•	ication – K-Nearest-Neighbor Classifiers – Fuzzy Set Approach				
	i-Supervised Classification.				
List of Exercise/Ex	•				
	ion Tree algorithms on any data set.				
2. Apply SVM	• •				
3. Implement K	-Nearest-Neighbor Classifiers				
UNIT IV	CLUSTERING AND OUTLIER DETECTION				6+6
Cluster Analysis -	- Partitioning Methods - Evaluation of Clusters - Probabilist	ic N	lode	l-B	ased
	89	_	_	_	_

Clustering – Out	liers and Outlier Analysis – Outlier Detection Methods – Statistical Approaches –						
-	assification-Based Approaches.						
List of Exercise/	**						
	means algorithms for any data set.						
	Dutlier Analysis on any data set.						
UNIT V	DATA VISUALIZATION 6+6						
	otlib – Simple line plots – Simple scatter plots – visualizing errors – density and contour						
plots – Histogram	ms - legends - colors - subplots - text and annotation - customization - three						
-	ing - Geographic Data with Basemap - Visualization with Seaborn.						
List of Exercise/	▲ · · · · · · · · · · · · · · · · · · ·						
	s using Matplotlib.						
	tation of Scatter Plot.						
	ion of Histogram, bar plot, Subplots, Line Plots.						
	t the three dimensional potting.						
5. Visualize	a dataset with Seaborn.						
	TOTAL:30+30 = 60 PERIODS						
OUTCOMES:							
	s course, the students will be able to:						
CO1: Explain the	e fundamentals of data science.						
CO2: Experimen	t python libraries for data science.						
CO3: Apply and	implement basic classification algorithms.						
CO4: Implement	clustering and outlier detection approaches.						
CO5: Present and	l interpret data using visualization tools in Python.						
	s data science algorithms to analyze data.						
TEXT BOOKS:							
	elen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning						
	ons, 2016. (Unit 1)						
	ajankar, Aditya Joshi, Hands-on Machine Learning with Python: Implement Neural						
	Solutions with Scikit-learn and PyTorch, Apress, 2022.						
	derPlas, "Python Data Science Handbook – Essential tools for working with data",						
O'Reilly,							
REFERENCES:							
U	Peng, R Programming for Data Science, Lulu.com, 2016						
	n, Micheline Kamber, Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition,						
	Laufmann, 2012.						
3. Samir Ma	dhavan, Mastering Python for Data Science, Packt Publishing, 2015						
4. Laura Igu	al, Santi Seguí, "Introduction to Data Science: A Python Approach to Concepts,						
5. Technique	es and Applications", 1st Edition, Springer, 2017						
6. Peter Brud	ce, Andrew Bruce, "Practical Statistics for Data Scientists: 50 Essential						
	, 3rd Edition, O'Reilly, 2017						
-	uerrero, "Excel Data Analysis: Modelling and Simulation", Springer International						
Publishing, 2nd Edition, 2019							
9. NPTEL Courses:							
	a. Data Science for Engineers - https://onlinecourses.nptel.ac.in/noc23_cs17/preview						
	thon for Data Science - https://onlinecourses.nptel.ac.in/noc23_cs21/preview						
LIST OF FO	UIPMENTS:						
	Anaconda, Jupyter Notebook, Python, Pandas, NumPy, MathPlotlib						
· · ·							
	DATA ANALYTICS L T P C						
22AM902	(LAB INTEGRATED) 2 0 2 3						

	22AM902	L T P C
(LAB INTEGRATED) 2 0 2 3	22AW1902	

OBJECTIVES:

- To explain the fundamentals of big data and data analytics
- To discuss the Hadoop framework
- To explain about exploratory data analysis and data manipulation tools
- To analyze and interpret streaming data
- To discuss various applications of data analytics

UNIT I INTRODUCTION

Evolution of Big Data- Definition of Big Data-Challenges with Big Data- Traditional Business Intelligence (BI) versus Big Data- Introduction to big data analytics- Classification of Analytics-Analytics Tools- Importance of big data analytics.

Lab Programs:

6.	Given a	data set,	explore the features us	sing exploratory	data analysis using Python/H	٤.
UNIT	II	HADO	DP FRAMEWORK			6+6

UNIT IIHADOOP FRAMEWORK6+Introducing Hadoop- RDBMS versus Hadoop-Hadoop Overview-HDFS (Hadoop Distributed
File System)- Processing Data with Hadoop- Managing Resources and Applications with6+

Hadoop YARN - Interacting with Hadoop Ecosystem.

Lab Programs:

4. Set up a pseudo-distributed, single-node Hadoop cluster backed by the Hadoop Distributed File System, running on Ubuntu Linux. After successful installation on one node, configuration of a multi-node Hadoop cluster.

91

ग्रम्भ

- 5. MapReduce application for word counting on Hadoop cluster
- 6. Implement an MR program that processes a given dataset

அற்கு

7. Implement an MR program that processes a weather dataset R

UNIT III EXPLORATORY DATA ANALYSIS

6+6

6+6

EDA fundamentals – Understanding data science – Significance of EDA – Making sense of data – Comparing EDA with classical and Bayesian analysis – Software tools for EDA –Data transformation techniques - Introduction to NoSQL – MongoDB: RDBMS Vs MongoDB – Data Types – Query Language – Hive – Hive Architecture – Data Types – File Formats – Hive Query Language (HQL) – RC File Implementation – User Defined Functions.

Lab Programs:

- 4. Implement an application that stores big data in Hbase / MongoDB / NoSQL / Pig using Hadoop / R.
- 5. Apply Bayesian and SVM techniques on Iris and Diabetes data set.
- 6. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API
- 7. Implement the following using Hadoop, Map Reduce, HDFS, Hive:
 - a. Perform setting up and Installing Hadoop in its two operating modes: pseudo distributed and fully distributed.
 - b. Implement the following file management tasks in Hadoop: adding files and directories, retrieving files and Deleting files.
 - c. (i)Performing a MapReduce Job for word search count (look for specific keywords ina file)

(ii) Implement stop word elimination problem: Input a large textual file containing one sentence per line and a small file containing a set of stop words (one stop word per line) and save the results in an output textual file containing the same sentences of the large input file without the words appearing in the small file.

d. Implement a MapReduce program that processes a weather data set to:

- i. Find average, max and min temperature for each year in National Climate DataCentre data set.
- ii. Filter the readings of a set based on value of the measurement. The programmust save the line of input files associated with a temperature value greater than
 - 30.0 and store it in a separate file.
- e. Install, deploy & configure Apache Spark cluster. Run Apache Spark applicationsusing Scala.
- f. Install and run Hive then use Hive to create, alter, and drop databases, tables, views, functions, and indexes.

UNIT IV	MINING DATA STREAMS	6+6					
The data strea	The data stream model – stream queries-sampling data in a stream-general streaming problem-						
filtering stream	ns-analysis of filtering- dealing with infinite streams- Counting Distance Elen	nents					
in a Stream –	Estimating Moments – Counting Ones in Window – Decaying Windows.						
Lab Programs:							
3. Impler	nent the following algorithms on realtime stream data sets.						
a.	Support Vector Machine						
b.	Decision tree classifier						
с.	Clustering Algorithms						

4. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API

		•	
UNIT V	APPLICATIONS		6+6

Application: Sales and Marketing – Industry Specific Data Mining – microRNA Data Analysis Case Study – Credit Scoring Case Study – Data Mining Nontabular Data.

Lab Programs:

1. Solve numerical problems on Eigen Value, Eigen Vector, etc. to understand the workingprinciples of mining techniques.

2. Mini Project: The project should contain the following components

- Realtime dataset
- Data preparation & Transformation
- Handling missing Data
- Data Storage
- Algorithm for data analytics

Data visualization: Charts, Heatmap, Crosstab, Treemap

TOTAL: 30+30 = 60 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Explain the fundamentals of big data and data analytics

CO2: Discuss the Hadoop framework

CO3: Explain about exploratory data analysis and data manipulation tools

CO4: Analyse and interpret streaming data

CO5: Illustrate various applications of data analytics

TEXT BOOKS:

- 2. Subhashini Chellappan, Seema Acharya, "Big Data and Analytics", 2nd edition, Wiley Publications, 2019.
- 3. Suresh Kumar Mukhiya and Usman Ahmed, "Hands-on Exploratory Data Analysis with Python", Packt publishing, March 2020.
- 4. Jure Leskovek, Anand Rajaraman and Jefrey Ullman," Mining of Massive Datasets. v2.1", Cambridge University Press, 2019.
- 5. Glenn J. Myatt, Wayne P. Johnson, Making Sense of Data II : A Practical Guide ToData Visualization, Advanced Data Mining Methods, and Applications, Wiley 2009.

- 1. Nelli, F., Python Data Analytics: with Pandas, NumPy and Matplotlib, Apress, 2018.
- 2. Bart Baesens," Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", John Wiley & Sons, 2014
- 3. Min Chen, Shiwen Mao, Yin Zhang, Victor CM Leung, Big Data: Related Technologies, Challenges and Future Prospects, Springer, 2014.
- 4. Michael Minelli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends", John Wiley & Sons, 2013.

22AM903	AM903 SOCIAL NETWORK ANALYTICS		P 0	C 3			
OBJECTIVES:							
To outlin	ne the components of the social network.						
• To elaborate the modeling and visualization of the social network.							
• To classify descriptive and inferential methods.							
To discu	ss about the evolution of the social network.						
To illust	rate the applications in real time systems.						
UNIT I	INTRODUCTION			9			
Basics of Socia	l Network Analysis: Introduction- The Social network and Representa	tion	-Ty	pes of			

Networks-Network parts and Level of Analysis-Networks as Social Structure and Institution- Theoretical Assumptions-Causality in Social Network Studies- A Brief History of Social Network Analysis-Mathematical Foundations: Graphs-Paths and components-Adjacency matrices-Ways and modes-Matrix products-Sources of network data-Types of nodes and types of ties- Data Collection: Network questions-Question formats-Interviewee burden-Data collection and reliability-Archival data collection-Data from electronic sources.

UNIT II

MODELING AND VISUALIZATION

Data Management: Data import-Cleaning network data- Data transformation-Normalization-Cognitive social structure data-Matching attributes and networks-Converting attributes to matrices-Data export,-Multivariate Techniques Used in Network Analysis: Multidimensional scaling-Correspondence analysis-Hierarchical clustering,- Visualization: Layout-Embedding node attributes-Node filtering-Ego networks-Embedding tie characteristics-Visualizing network change-Exporting visualizations-Closing comments.

UNIT III **DESCRIPTIVE AND INFERENTIAL METHODS**

Descriptive Methods in Social Network Analysis: Graph and Matrix-Social Network Representation -Density - Centrality, Centralization and Prestige- Cliques - Multidimensional Scaling(MDS) and Dendogram - Structural Equivalence - Two mode Networks and Bipartite Matrix-Inferential Methods in Social Network Analysis: Permutation and QAP (Quadratic Assignment Procedure) Correlation-P* or Exponential Random Graph Model(ERGM).

9

9

9

EVOLUTION UNIT IV

Evolution in Social Networks - Framework - Tracing Smoothly Evolving Communities - Models and Algorithms for Social Influence Analysis - Influence Related Statistics - Social Similarity and Influence - Influence Maximization in Viral Marketing - Algorithms and Systems for Expert Location in Social Networks - Expert Location without Graph Constraints - with Score Propagation - Expert Team Formation - Link Prediction in Social Networks - Feature based Link Prediction - Bayesian Probabilistic Models - Probabilistic Relational Models.

UNIT V **APPLICATIONS**

A Learning Based Approach for Real Time Emotion Classification of Tweets, A New Linguistic Approach to Assess the Opinion of Users in Social Network Environments, Explaining Scientific and Technical Emergence Forecasting, Social Network Analysis for Biometric Template Protection **TOTAL: 45 PERIODS**

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Outline the internal components and terminology of the social network.

CO2: Illustrate the fundamental exploratory multivariate techniques and visualizing network data.

CO3: Discuss most common descriptive and inferential statistical tools available.

CO4: Discuss about the evolution of the social network.

CO5: Illustrate the real time applications of social network analysis.

CO6: Apply the methods in Social Network Analysis to solve real world problems.

TEXT BOOKS:

- 1. Song Yang, Franziska B. Keller, "Social Network Analysis Methods and Examples", SAGE Publications Inc. 2017.
- 2. Stephen P Borgatti, Martin G. Everett, Jeffrey C. Johnson, "Analyzing Social Networks", Second Edition, 2017.

- 1. Charu C. Aggarwal, "Social Network Data Analytics", Springer; 2014.
- 2. Przemyslaw Kazienko, Nitesh Chawla, "Applications of Social Media and Social Network Analysis", Springer, 2015.
- 3. Ajith Abraham, Aboul Ella Hassanien, Vaclav Snasel, "Computational Social Network Analysis: Trends, Tools and Research Advances", Springer, 2012.
- 4. Borko Furht, "Handbook of Social Network Technologies and Applications", Springer, 1st edition, 2011.

5. Guandong Xu, Yanchun Zhang and Lin Li, "Web Mining and Social Networking – Techniques and applications", Springer, 1st edition, 2012.

22AM904	TEXT AND SPEECH ANALYTICS	L T	_	C
OBJECTIVE	S.	3 0	0	3
	troduce the tools and techniques for performing text and speech analyt	ice in a	livor	10
conte			11 1 0 0 1	30
	derstand the tools and technologies involved in developing text and sp	eech a	nnlia	rations
	monstrate the use of computing for building applications in text and sp			
	e information Retrieval Techniques to build and evaluate text processi			0
	ply advanced speech recognition methodologies in practical application		cenns	•
UNIT I	TEXT PROCESSING			9
	anguage Processing - Regular Expression - Text normalization	– Edit	Dis	-
	– Stemming – N-gram Language Models - Vector Semantics and En			curree
UNIT II	TEXT CLASSIFICATION		-851	9
	tion Tasks – Language Model – Neural Language Models – RNNs as	Lang	1996	
	s and Large Language Models.	Dung	iuge	model
UNIT III	QUESTION ANSWERING AND DIALOGUE SYSTEMS			9
	etrieval – Dense Vectors – Neural IR for Question Answering – Ev	aluatir	σΒέ	-
	n Answering – Frame-based Dialogue Systems – Dialogue Acts and			
	logue System Design.		'Suc	State
UNIT IV	TEXT TO SPEECH SYNTHESIS			9
	eech Recognition Task – Feature Extraction for ASR: Log Mel S	pectru	n –	-
	rchitecture – CTC - ASR Evaluation: Word Error Rate – TTS – Speec			~ [
UNIT V	SPEECH RECOGNITION			9
	SPEECH RECOGNITION n recognition - Hidden Markov Model (HMM) - Training procedure for	or HM	M- s	-
LPC for speech	n recognition - Hidden Markov Model (HMM) - Training procedure for			ubword
LPC for speecl unit model ba	n recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec	ognitio	on -	ubword Overall
LPC for speech unit model ba recognition sys	n recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema	ognitio	on -	ubword Overal
LPC for speech unit model ba recognition sys	n recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition.	ognitio intic po	on - ost pi	ubword Overall
LPC for speech unit model ba recognition syst for speech reco	n recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition.	ognitio intic po	on - ost pi	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES	n recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition.	ognitio intic po	on - ost pi	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of the CO1: App	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks	ognitio intic po AL: 45 s.	on - ost pi	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of CO1: App CO2: Impl	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accu	ognitio intic po AL: 45 s.	on - ost pi	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of CO1: App CO2: Impl CO3: Desi	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accur gning text processing systems using state-of-the-art techniques.	ognitio intic po AL: 45 s.	on - ost pi	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of CO1: App CO2: Impl CO3: Desi CO4: Desi	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT: this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accu gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems.	ognitio Intic po AL: 4 S. Iracy.	on - ost pi	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT: this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accu gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application	ognitio intic po AL: 45 S. iracy. s.	on - ost pi 5 PE	ubword Overal
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO6: Use	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT: this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accu gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing	ognitio intic po AL: 45 S. iracy. s.	on - ost pi 5 PE	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of t CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO6: Use	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech recognition and subword units - Context dependent subword units- Sema ognition. TOT . : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accur gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S:	ognitio intic po AL: 4 s. iracy. s. g syste	ms.	ubword Overall
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO5: App CO6: Use TEXT BOOK 1. Jurafsky,	h recognition - Hidden Markov Model (HMM) - Training procedure for sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accur gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction	ognition intic po AL: 4 S. Iracy. s. g syste	ms.	ubword Overal cocesson
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO6: Use TEXT BOOK 1. Jurafsky, Language	h recognition - Hidden Markov Model (HMM) - Training procedure fe sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accu gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction Processing, Computational Linguistics, and Speech Recognition Pear	ognition intic po AL: 4 S. Iracy. s. g syste	ms.	ubword Overall cocessor
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of t CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO6: Use TEXT BOOK 1. Jurafsky, Language Third Edit	h recognition - Hidden Markov Model (HMM) - Training procedure fe sed on HMM - Language models for large vocabulary speech rec- stem based on subword units - Context dependent subword units- Sema ognition. TOT: this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accur gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction Processing, Computational Linguistics, and Speech Recognition Pear- tion, 2022.	ognitio untic po AL: 4 s. s. s. g syste to Na son Pu	on - ost pr 5 PE ms. cural blica	ubword Overall cocessor
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of the CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO5: App CO6: Use TEXT BOOK 1. Jurafsky, Language Third Edit 2. Lawrence	h recognition - Hidden Markov Model (HMM) - Training procedure fe sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT . : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accu gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction Processing, Computational Linguistics, and Speech Recognition Pear tion, 2022. Rabiner, Biing-Hwang Juang and B.Yegnanarayana, "Fundamentals of	ognitio untic po AL: 4 s. s. s. g syste to Na son Pu	on - ost pr 5 PE ms. cural blica	ubword Overal cocesson
unit model ba recognition sys for speech reco OUTCOMES At the end of the CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO6: Use TEXT BOOK 1. Jurafsky, Language Third Edit 2. Lawrence Recognition	h recognition - Hidden Markov Model (HMM) - Training procedure fe sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT . : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accur gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction Processing, Computational Linguistics, and Speech Recognition Pear tion, 2022. Rabiner, Biing-Hwang Juang and B.Yegnanarayana, "Fundamentals on", Pearson Education, 2009.	ognitio untic po AL: 4 s. s. s. g syste to Na son Pu	on - ost pr 5 PE ms. cural blica	ubword Overall cocessor
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of the CO1: App CO2: Impl CO3: Desi CO4: Desi CO4: Desi CO5: App CO6: Use TEXT BOOK 1. Jurafsky, Language Third Edit 2. Lawrence Recognitic	h recognition - Hidden Markov Model (HMM) - Training procedure fe sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT. : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accur gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction Processing, Computational Linguistics, and Speech Recognition Pear tion, 2022. Rabiner, Biing-Hwang Juang and B.Yegnanarayana, "Fundamentals on", Pearson Education, 2009. ES:	ognition intic po AL: 4 AL: 4 S. Intacy. Is. Is. Is. Is. Is. Is. Is. Is. Is. Is	ms. ms. cural blica	ubword Overall cocessor RIODS
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of the CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO6: Use TEXT BOOK 1. Jurafsky, Language Third Edit 2. Lawrence Recognition REFERENC 1. John Atki	h recognition - Hidden Markov Model (HMM) - Training procedure fe sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT . : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accu gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction Processing, Computational Linguistics, and Speech Recognition Pear- tion, 2022. Rabiner, Biing-Hwang Juang and B.Yegnanarayana, "Fundamentals con", Pearson Education, 2009. ES: nson-Abutridy, Text Analytics: An Introduction to the Science and Ap	ognition intic po AL: 4 AL: 4 S. Intacy. Is. Is. Is. Is. Is. Is. Is. Is. Is. Is	ms. ms. cural blica	ubword Overall cocesson RIODS
LPC for speech unit model ba recognition sys for speech reco OUTCOMES At the end of the CO1: App CO2: Impl CO3: Desi CO4: Desi CO5: App CO6: Use TEXT BOOK 1. Jurafsky, 1 Language Third Edit 2. Lawrence Recognition REFERENC 1. John Atki Unstructu	h recognition - Hidden Markov Model (HMM) - Training procedure fe sed on HMM - Language models for large vocabulary speech rec stem based on subword units - Context dependent subword units- Sema ognition. TOT. : this course, the students will be able to: ly the fundamental techniques in text processing for various NLP tasks ement advanced language models and improve text classification accur gning text processing systems using state-of-the-art techniques. gn, implement, and evaluate ASR and TTS systems. ly advanced speech recognition methodologies in practical application information Retrieval Techniques to build and evaluate text processing S: D. and J. H. Martin, Speech and language processing: An Introduction Processing, Computational Linguistics, and Speech Recognition Pear tion, 2022. Rabiner, Biing-Hwang Juang and B.Yegnanarayana, "Fundamentals on", Pearson Education, 2009. ES:	ognition intic po AL: 4 AL: 4 S. Intacy. Is. Is. Is. Is. Is. Is. Is. Is. Is. Is	ms. ms. cural blica	ubword Overall cocesson RIODS

- 3. Lawrence R. Rabiner, Ronald W. Schafe, Theory and Applications of Digital Speech Processing, First Edition, Pearson, 2010.
- 4. Srinivasa-Desikan, Bhargav. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.

	Р	С
22AM905IMAGE AND VIDEO ANALYTICS3	0	3
OBJECTIVES:	-	
The Course will enable learners to:		
• To understand the basics of image processing techniques for computer vision a	nd vi	deo
analysis.		
• To illustrate the techniques used for image pre-processing.		
• To discuss the various image Segmentation techniques.		
 To understand the various Object recognition mechanisms. 		
 To elaborate on the motion analysis techniques for video analytics. 		
UNIT I INTRODUCTION		9
Computer Vision – Image representation and image analysis tasks - Image representations – of	ioitiz	
– properties – color images – Data structures for Image Analysis - Levels of image data rep		
- Traditional and Hierarchical image data structures.	esena	
UNIT II IMAGE PRE-PROCESSING		9
Pixel brightness transformations - Geometric transformations - Local pre-processing - Image	smoot	· · · · ·
- Edge detectors - Zero-crossings of the second derivative - Scale in image processing - C		-
detection - Parametric edge models - Edges in multi-spectral images - Local pre-process	•	0
frequency domain - Line detection by local pre-processing operators - Detection of corne		
points) - Detection of maximally stable extremal regions - Image restoration.	~ (
UNIT III SEGMENTATION		9
Thresholding - Edge-based segmentation - Region-based segmentation - Matching - E	aluat	ion
issues in segmentation - Mean shift segmentation - Active contour models.		
UNIT IV OBJECT RECOGNITION		9
Knowledge representation - Statistical pattern recognition - Neural nets - Syntactic pattern re	ecogni	tion -
Recognition as graph matching - Optimization techniques in recognition - Fuzzy systems -		
pattern recognition - Random forests - Image understanding control strategies.		U
UNIT V MOTION ANALYSIS		9
Differential motion analysis methods - Optical flow - Analysis based on correspondence o	f inter	est
points - Detection of specific motion patterns - Video tracking - Motion models to aid tracki		
TOTAL: 45	PER	IODS
OUTCOMES:		
Upon completion of the course, the students will be able to:		
CO1: Understand the basics of image processing techniques for computer vision and video	analys	is.
CO2: Illustrate the techniques used for image pre-processing.	-	
CO3: Analyze the various image Segmentation techniques.		
CO4: Understand the various Object recognition mechanisms.		
CO5: Elaborate on the motion analysis techniques for video analytics.		
CO6: Apply image processing techniques in real-world applications.		
TEXT BOOKS:		
1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Ma	chine	
Vision", 4nd edition, Thomson Learning, 2013.		

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag London Limited, 2011.
- 2. Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012.
- 3. D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Pearson Education, 2003.
- 4. E. R. Davies, "Computer & Machine Vision", Fourth Edition, Academic Press, 2012.

22AM906	STREAM PROCESSING AND ANALYTICS	L 3	T 0	P 0	C 3
OBJEC	TIVES	3	U	U	3
	vill enable learners to:				
	line the framework for real time stream processing.				
	n various algorithms for data streaming.				
	ntify frequent item sets by mining from data streams.				
	oduce approaches to evaluate stream learning algorithms.				
	tools for distributed data flow management.				
	ign solutions to stream processing problems.				
UNIT I	INTRODUCTION TO DATA STREAMS				9
	odels – Bounds of Random variables – Poisson Process – Maintaining Simp	la Sta	tistics	from	-
	ling Window and computing statistics over sliding windows – Data Sy				
	Vavelets – DFT - Change Detection: Tracking Drifting Concepts - Monitoring				
UNIT II	STREAMING ALGORITHMS	,		0	9
<u> </u>	nples: Basic Concepts - Partitioning Clustering – Hierarchical Clustering - M	licro (Cluste	ring –	-
	ustering Variables - The Very Fast Decision Tree Algorithm (VFDT) -				
Analysis of th	e VFDT Algorithm, Extensions to the Basic Algorithm: Processing C				
Functional Tree	e Leaves, Concept Drift.				
UNIT III	FREQUENT PATTERN MINING				9
Introduction -	- Heavy Hitters - Mining Frequent Itemsets from Data Streams - La	ndma	ark V	Vindo	ws -
Mining Recen	t Frequent Itemsets - Frequent Itemsets at Multiple Time Granularitie	s - Se	quen	ce Pa	ttern
Mining - Rese	rvoir Sampling for Sequential Pattern Mining over data stream.				
UNIT IV	EVALUATING STREAMING ALGORITHMS				9
Learning from	n Data Streams - Evaluation Issues - Design of Evaluation Exper	iment	s - F	Evalu	ation
Metrics - Con	parative Assessment - Evaluation Methodology in Non-Stationary En	nviror	nmen	ts.	
UNIT V	DATA FLOW MANAGEMENT				9
	a Flows – Apache Kafka – Apace Flume - Processing Streaming Data – Sto	ring S	trean	ning D	ata –
Delivering Stre					
		FAL:	45 F	PERI	ODS
OUTCO					
	tion of the course, the students will be able to:				
	the framework for real time stream processing.				
	te various algorithms for data streaming.				
	e frequent item sets by mining from data streams.				
	he metrics and procedures to evaluate a model.				
	ls for distributed data flow management.				
	o solutions for real-world problems using streaming data.				
TEXT BOOH					
	ama, "Knowledge Discovery from Data Streams", CRC Press, 2010.		-	_	
	Ellis, Real-Time Analytics: Techniques to Analyze and Visualize Str	eamir	ng Da	ita, F	ırst
	n, WILEY Big Data Series, 2014.				
REFER	ENCES:				

- 1. Andrew Psaltis, Streaming Data: Paul Lewis, First Edition, Manning Publication, 2017.
- 2. Bugra Gedik, Deepak S. Turaga, Henrique C. M. Andrade, Fundamentals of Stream Processing: Application Design, Systems, and Analytics, Cambridge University Press, 2014.
- 3. Charu C. Aggarwal, "Data Streams: Models and Algorithms", Kluwer Academic Publishers, 2007.
- 4. David Luckham, "The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems", Addison Wesley, 2002.

VERTICAL II – APPLIED AI

		L	Т	Р	C
22AM907	AI in BLOCK CHAIN	3	0	0	3
OBJECTIVES:					1
• To acquire	knowledge in Blockchain Technologies.				
To understa	and how block chain and AI can be used to innovate.				
To elaborat	e Cryptocurrencies and AI.				
	applications using blockchain.				
To understa	and the limitations and future scope of AI in Blockchain.				
UNIT I	INTRODUCTION TO BLOCKCHAIN			9	
Overview – Block	chain vs Distributed Ledger Technology vs Distributed Databases	5 – P	ubli	c vs	
private vs permissi	oned blockchains - Privacy in blockchains - Blockchain platforn	1s -	Нур	erled	ger
– Hashgraph, Cord	a – IOTA - Consensus Algorithms – Building DApps with block	cha	in to	ols.	
UNIT II	BLOCKCHAIN AND ARTIFICIAL INTELLIGENCE			9	
Introduction to the	AI landscape - AI and Blockchain driven Databases - Centralize	d vs	Dis	tribu	ted
data – Blockchain	data – Big data for AI analysis – Global databases – Data Manage	eme	nt in	a DA	4O -
Benefits of combin	ing blockchain and AI – Aicumen Technologies -Combining blo	ckcł	nain	and A	ΑI
to humanize digita	l interactions.				
UNIT III	CRYPTOCURRENCY AND AI			9	
Bitcoins – Ethereu	m - Role of AI in cryptocurrency – cryptocurrency trading – Mak	ing	price	e	
predictions with A	I – Market making – future of cryptocurrencies.				
UNIT IV	DEVELOPING BLOCKCHAIN PRODUCTS			9	
	Cycle of a DIApp – Designing a DIApp – Developing a DIApp –	Tes	sting	_	
	toring – Implementing DIApps.				
UNIT V	LIMITATIONS AND FUTURE OF AI WITH BLOCKCHA	IN		9	
Technical Challeng	ges – Business Model Challenges – Scandals and Public perception	on –	Gov	vernn	nent
Regulation – Priva	cy Challenges for Personal Records – Convergence of AI with Bl	ock	chai	n –	
Future – Enterprise					
	ΤΟΤΑ	L: 4	45 P	ERI	ODS
OUTCOMES:					
At the end of this	course, the students will be able to:				
CO1 : Acquire	knowledge in Blockchain Technologies.				
	and how block chain and AI can be used to innovate.				
	e Cryptocurrencies and AI.				
-	applications using blockchain.				
	and the limitations and future scope of AI in Blockchain.				
	e the various applications of AI in Blockchain.				
TEXT BOOKS:					

- 1. Ganesh Prasad Kumble, Anantha Krishnan, "Practical Artificial Intelligence and Blockchain: A guide to converging blockchain and AI to build smart applications for new economies", Packt Publications, 2020.
- 2. Melanie Swan, "Block Chain: Blueprint for a New Economy", O'Reilly, 2015.

- 1. Daniel Drescher, "Block Chain Basics", Apress; 1st edition, 2017.
- 2. Salman Baset, Luc Desrosiers, Nitin Gaur, Petr Novotny, Anthony O'Dowd, Venkatraman Ramakrishna, "Hands-On Block Chain with Hyperledger: Building Decentralized Applications with Hyperledger Fabric and Composer", Import, 2018.

22 A N/IOUO	AUGMENTED AND VIRTUAL REALITY	L	Т	Р	С
22AM908	(Lab Integrated)	2	0	2	3
OBJECTIV	/ES:				
The Course	e will enable learners to:				
• Get	exposure on Augmented Reality.				
• Intro	duce Virtual Reality and input and output devices.				
• Acqu	uire knowledge on computing architectures and modelling.				
-	ore Virtual Reality programming and human factors.				
-	n various applications of Virtual Reality.				
UNIT I	AUGMENTED REALITY (AR)				6+6
Introduction	to Augmented Reality-Computer vision for AR-Intera	ction-	Mod	elling	g and
	Navigation-Wearable devices.			- C	,
List of Exe					
1.Develop s	imple AR Application like snapchat.				
	AR enabled simple applications like human anatomy visua	alizati	on, I	DNA	/RNA
structure vis	ualization.				
UNIT II	INTRODUCTION TO VIRTUAL REALITY (VR) AN	D INI	PUT		6+6
	AND OUTPUT DEVICES				
	: The three I's of Virtual Reality Early commercial VR t				
	ponents of a VR system. Input devices: Three-Dimension				
	ormance parameters - ultrasonic trackers - optical tracker				
	n interfaces - gesture interfaces. Output devices: graphics dis	splays	s - lar	ge-vo	olume
1 •	ound displays.				
List of Exer					
	ools like Unity, Maya/3DS MAX/Blender.				
	rimitive objects and apply various projection types by handli				<u> </u>
UNIT III	COMPUTING ARCHITECTURES AND MODELING SYSTEM	OF A	4 VK		6+6
Commuting					1
	architectures for VR: The rendering pipeline - The graphics rendering pipeline - PC graphics architecture - PC graphics as				
	- Distributed VR architectures - Multipipeline synchron				
	ipelines. Modeling: geometric modeling - kinematics mod				
behavior mo		ening	P	ly siee	ii uii
	,				
List of Exe	reises:				
	objects from asset store and apply various lighting and shad	ling e	ffects	5.	
	ree dimensional objects using various modelling technique	•			xture
over them	, <u>, , , , , , , , , , , , , , , , , , </u>		r r	5	
	VD DDOCDAMMINC AND IIIMAN FACTODS				

UNIT IV VR PROGRAMMING AND HUMAN FACTORS	6+6	
--	-----	--

Toolkits and scene graphs - WorldToolKit - Model geometry and appearance - The WTK scene graph - Sensors and action functions - WTK networking - Java 3D - Model geometry and appearance - Java 3D scene graph - Sensors and behaviors - Java 3D networking - WTK and Java 3D performance comparison –Human factors in VR: Methodology and terminology - user performance studies - VR health and safety issues - VR and society

List of Exercises:

1.Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.

2. Add audio and text special effects to the developed application

2.1100 0000	o una tent special chierts to the acterspea application	
UNIT V	APPLICATIONS OF VR	6+6
Medical Ap	pplication of VR - Virtual anatomy-Triage and diagnostic - Surgery -	VR in
education -	VR and the Arts - Entertainment applications of VR - military VR applica	tions -
Army use o	f VR - VR applications in the Navy - Air force use of VR - Applications of	VR in
Robotics - I	Robot programming - Robot teleoperation	

List of Exercises:

1.Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.

2.Develop VR/AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places. **TOTAL =30+30=60 PERIODS**

OUTCOMES:

Upon completion of the course, the students will be able to:

- Understand Augmented Reality.
- Explore different input and output devices used in Virtual Reality system.
- Model the VR system.
- To learn about Google Toolkit's and Scene Graph.
- Apply VR in various fields.

TEXT BOOKS:

- 1. Dieter Schmalstieg, Tobias Hollerer, "Augmented Reality: Principles & Practice", Addison Wesley, 2016.
- Grigore C. Burdea, Philippe Coiffet, "Virtual reality technology", Wiley, Second Edition, 2017.

REFERENCE BOOKS:

- 1.Sherman, William R & Craig, Alan B, "Understanding Virtual reality", Elsevier India Private Limited, Noida, 2018.
- 2.Charles Palmer, John Williamson, "Virtual Reality Blueprints: Create compelling VR experiences for mobile", Packt Publisher, 2018.

SOFTWARE REQUIREMENTS:

Unity, Maya/3DS MAX/Blender.

INTELLIGENT ROBOTS

L	Т	Р	С
3	0	0	3

OBJECTIVES:

22AM909

- To understand the basics of Intelligent Robots.
- To discuss the Autonomous capabilities and Software architecture.
- To elaborate the Reactive Functionality of intelligent Robots.
- To use the various sensors in building Intelligent Robots.

To illustrate the Deliberative Functionality of intelligent Robots. • **UNIT I INTRODUCTION** 9 Overview- Definition – Components - Three Modalities – Need for Intelligent Robots – History of AI Robotics - Industrial Manipulators - Mobile Robots - Drones - Cognitive Systems. **UNIT II AUTOMATION AND AUTONOMY** 9 Autonomous Capabilities – Bounded Rationality – Automation and Autonomy – Programming Style - Hardware Design - Types of Functional Failures - Autonomous Capabilities. Types of Software Architectures – Operational Architectures – Components of a Telesystem – Human Supervisory Control. **UNIT III REACTIVE FUNCTIONALITY** Behaviours : Agency and Marr's Computational Theory – Animal Behaviours – Schema Theory. Perception: Action-Perception cycle – Functions. Behaviour Coordination – Function – Cooperating Methods – Competing Methods – Sequences. SENSORS AND SENSING **UNIT IV** 9 Locomotion: Mechanical, Biomimetic, Legged Locomotion - Action Selection - Sensors and Sensing Model – Choosing – Range Sensing: Stereo – Depth from X – Sonar or Ultrasonics. **DELIBERATIVE FUNCTIONALITY** 9 **UNIT V** Deliberation – Strips – Navigation – Spatial Memory – Types of Path Planning – Configuration Space – Metric Path Planning – Motion Planning – Localization – Feature based Localization – Iconic Localization – Static vs Dynamic Environments – Simultaneous Localization and Mapping - Terrain Identification and Mapping - Scale and Traversability - Exploration - Mutlirobot Systems and AI -Human-Robot Interaction and areas of AI. **TOTAL: 45 PERIODS OUTCOMES:** At the end of this course, the students will be able to: **CO1**: Understand the basics of Intelligent Robots. **CO2**: Design and implement Autonomous capabilities in Robotics systems. CO3: Elaborate the Reactive Functionality of intelligent Robots. **CO4**: Use the various sensors in building Intelligent Robots. **CO5**: Illustrate the Deliberative Functionality of intelligent Robots. **CO6**: Analyse the various applications of AI Robotics. **TEXT BOOKS:** 1. Robin R. Murphy, "Introduction to AI Robotics", MIT Press, Second Edition, 2019. **REFERENCES:** 1. Francis X. Govers, "Artificial Intelligence for Robotics: Build Intelligent Robots that Perform Human Tasks Using AI Techniques", Packt Publishing, 2018. 2. Sebastian Thrun, Wolfram Burgard, and Dieter Fox, "Probabilistic Robotics", MIT Press, 2005. 3. Yoon Seok Pyo, Han Cheol Cho, Ryu Woon Jung, and Tae Hoon Lim, "ROS Robot Programming", ROBOTIS Co., Ltd, 2017.

22AM910	GENERATIVE AI	L	Т	Р	С		
22AW1910	GENERALIVE AI	3	0	0	3		
OBJECTIVES:	OBJECTIVES:						
• Understand the basic concepts of Generative AI.							
• Build Generative AI systems to generate outputs of different domains.							
Deploy Generative AI Models.							
• Compare and use the various Large Language Models.							
• Understand the basics of Prompt Engineering							

Understand the basics of Prompt Engineering.

UNIT I	GENERATIVE AI CONCEPTS	9
ntroduction to Ge	enerative AI – Deep Learning – Deep Neural Networks – Multi-L	ayer Perceptron –
	ural Network – Autoencoders - Variational Autoencoders – Later	nt Space.
J NIT II	GENERATIVE ADVERSARIAL NETWORKS	9
Deep Convolution	al GAN (DCGAN) - Wasserstein GAN with Gradient Penalty (W	VGAN-GP) -
Conditional GAN	(CGAN) - Autoregressive Models - Long Short-Term Memory N	Network (LSTM).
U NIT III	FLOW MODELS	9
Normalizing Flow	rs - RealNVP - Energy-Based Models - Denoising Diffusion Mod	dels (DDM).
U NIT IV	LARGE LANGUAGE MODELS	9
Overview of LLN	ls - Transformers – GPT – Types of LLMs – Key concepts – othe	er Transformers – T5
- Generative Pre-	Frained Models – Multi-modal Models – DALL.E 2	
UNIT V	PROMPT ENGINEERING	9
	xt Learning – In-Context Prompting – Techniques – Image Prom	pting – Prompt
Hijacking – Chall	enges.	
	т	DTAL: 45 PERIOD
OUTCOMES:		
At the end of this	s course, the students will be able to:	
	and the basic concepts of Generative AI.	
	enerative AI systems to generate outputs of different domains.	
	Generative AI Models.	
1 .	e and use the various Large Language Models.	
	and the basics of Prompt Engineering.	
	Generative AI to solve real world applications.	
TEXT BOOKS:	senerali ve fili to softe fear world appreadors.	
	ster, Generative Deep Learning, 2nd Edition, O'Reilly Media, 202	23
	ee, Generative AI in Action, Manning Publication, First Edition,	
REFERENCES:	ee, Generative 741 in 74etion, ivianing 1 doneation, 1 list Edition,	2023.
	amani and Maggie Engler, Introduction to Generative AI, Mann	ing Publication First
Edition, 20		ing ruoneuton, ru
,	Alto, Modern Generative AI with ChatGPT and OpenAI Model	s Packt publications
2024.	The, Would Generalize The with Charles F and Open II Would	s, i dekt publication
	1	
2205025	O CAME DEVELODMENT	L T P C
22CS925	GAME DEVELOPMENT	3 0 0 3
OBJECTIVES:		
	enable learners to:	
	stand game programming fundamentals.	
	about the processes, mechanics, issues in game design.	
10 iculii	see and proceeders, meenames, moure in Same action.	
 To gain k 	nowledge of the game design and Artificial intelligence.	

- To understand the design and scripting languages of game programming.To know about networked games and analyse code for sample games.

UNIT I	INTRODUCTION	9				
Evolution of video game programming-The Game Loop-Time and games-Game objects-2D rendering						
Foundations-S	Sprites-Scrolling-Tile maps-Vectors -Matrices.					
UNIT II	3D GRAPHICS FOR GAMES	9				
3D graphics-Basics-Coordinate-spaces-Lighting and Shading-visibility-Input Devices-Event based						

1 V		le Input-Basic sound-3D sound-Digital Signal Processing-Physics-Planes, Ra	•
line segments		ision geometry-Collision detection-Physics base movement-Physics middlew	vare
UNIT III		ME DESIGN AND AI	9
		cameras-Perspective projection-Camera implementation-Camera support alg	-
v 1		ne AI-Pathfinding-State based behaviours-Strategy and planning.	omm
UNIT IV	1	CR INTERFACE AND SCRIPTING LANGUAGES	9
	USE	IN INTERFACE AND SCRIPTING LANGUAGES	9
scripting lang	guage-	D elements-Radar-other UI considerations-Scripting languages-Implement Tokenization-Syntax Analysis-Code Execution or Generation-Data Formation porld of warcraft.	
UNIT V		TWORKED GAMES	9
Protocols-Net	twork	Topology-Server/Client-Peer-to-Peer-Cheating-Sample game -Side scrol	ller for
		e for PC/Mac-Code Analysis.	
		TOTAL: 45 PE	RIODS
OUTCOME	S:		
		course, the students will be able to:	
		he fundamentals of game programming.	
		processes, mechanics, issues in game design,	
		game design and artificial intelligence.	
-	-	pasic game engine using UI and scripting languages.	
		e for sample games.	
	-	he 3D game design	
TEXT BOO		ne 5D game design	
		w, Game Programming Algorithms and Techniques: A platform -A	anosti
•••	viauna		
Annroach			gnosti
	n-Gam	e Design,1 st Edition, Addison-Wesley Professional,2013.	-
2. Jouni Sm	n-Gam ed, Ha	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition	-
2. Jouni Smo Publicatio	n-Gam led, Ha ons,20	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition	-
2. Jouni Smo Publicatio	n-Gam led, Ha ons,20 CES:	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17.	n,Wiley
 Jouni Sma Publication REFERENC Ernest A 	n-Gam ed, Ha ons,20 C ES: dams	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition	n,Wiley
 Jouni Sme Publication REFERENC Ernest A Edition,20 	n-Game ed, Ha ons,20 CES: dams 014.	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H	n,Wiley all 3rc
 Jouni Sme Publication REFERENC Ernest A Edition,20 	n-Game ed, Ha ons,20 CES: dams 014.	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17.	n,Wiley all 3rd
 Jouni Sme Publication REFERENC Ernest A Edition,200 	n-Game ed, Ha ons,20 CES: dams 014.	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition	n,Wiley all 3rd
 Jouni Sme Publication REFERENC Ernest A Edition,200 	n-Gam ed, Ha ons,20 C ES: .dams 014. n Han,	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition	all 3rd a, 2011
 Jouni Sma Publicatio REFERENC Ernest A Edition,20 JungHyur 22CS921 	n-Gam ed, Ha ons,20 C ES: .dams 014. n Han,	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT	all 3rd a, 2011
 Jouni Sma Publicatio REFERENC Ernest A Edition,20 JungHyur 22CS921 OBJEC 	a-Gama ed, Ha ons,20 CES: dams 014. n Han,	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T H 3 0 0	all 3rc a, 2011
 Jouni Sma Publicatio REFERENC Ernest A Edition,20 JungHyur 22CS921 OBJEC The Course version 	n-Gam ed, Ha ons,20 CES: dams 014. n Han, CTIVE will en	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0	all 3rc a, 2011
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur 22CS921 OBJEC The Course version Understant 	n-Gam ed, Ha ons,20 CES: .dams 014. n Han, CTIVE will en nd the	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 ES: hable learners to: basic technologies and protocols used in Industrial IoT.	all 3rc a, 2011
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur 22CS921 OBJEC The Course volume Understar Illustrate of 	a-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en nd the the mo	e Design, 1 st Edition, Addison-Wesley Professional, 2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 ES: hable learners to: basic technologies and protocols used in Industrial IoT. basic technologies and protocols used in Industrial IoT. basic technologies and protocols used in Industrial IoT.	all 3rc a, 2011
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur 22CS921 OBJEC The Course was an analysis of the course of the	a-Gama ed, Ha ons,20 CES: dams 014. n Han, CTIVE will en and the the mo-	e Design, 1 st Edition, Addison-Wesley Professional, 2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 ES: hable learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications.	all 3rc a, 2011
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur 22CS921 OBJEC The Course volume Understart Illustrate to Identify at Explain th 	a-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en nd the the mo and app he vari	e Design, 1 st Edition, Addison-Wesley Professional, 2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T H 3 0 0 CS: nable learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT.	all 3rc a, 2011
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur 22CS921 OBJEC OBJEC Understart Illustrate to Explain the Build solution 	a-Gam ed, Ha ons,20 CES: dams 014. n Han, CTIVE will en the mo the mo und app he vari utions	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 CS: nable learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT.	all 3rc a, 2011
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC The Course volume Understart Illustrate to Identify at Explain th Build solu Solve real 	a-Gama ed, Ha ons,20 CES: dams 014. n Han, CTIVE will en and the the mo und app he vari- utions 1-world	e Design, 1 st Edition, Addison-Wesley Professional, 2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IOT L T F 3 0 0 CS: able learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. d problems using IIoT analytics.	n,Wiley all 3rc n, 2011 C 3
 Jouni Sma Publication Publication Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC Understart Illustrate of Identify at Explain the Build solu Solve real UNIT I 	a-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en nd the the mo and app he vari utions 1-world	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T H 3 0 0 ES: nable learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. INTERNET OF THINGS (IOT)	n,Wiley all 3rc n, 2011 C 3
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC The Course value Understar Illustrate value Identify at Explain th Build solu Solve real UNIT I Introduction – 	A-Gamaed, Ha ons,20 CES: dams 014. n Han, n Han, CTIVE will en and the the mo and app he vari utions 1-world - Netw	e Design, I st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 ES: nable learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. d problems using IIoT analytics. INTERNET OF THINGS (IoT) working – Cyber Physical Systems – Evolution of IoT – IoT Networking Comp	all 3rc a, 2011 C 3
 Jouni Sma Publication REFERENC Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC Understart Illustrate to Identify at Explain th Build solu Solve real UNIT I Introduction - Addressing 	a-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en nd the the wari utions 1-world he vari utions 1-world - Netw g Strate	e Design, 1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T H 3 0 0 ES: nable learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. d problems using IIoT analytics. INTERNET OF THINGS (IOT) working – Cyber Physical Systems – Evolution of IoT – IoT Networking Compegies – IoT Sensing and Actuation.	all 3rc all 3rc a, 2011 C 3
 Jouni Sma Publication Publication Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC The Course version Illustrate version Illustrate version Identify at Explain th Build solu Solve real UNIT I Introduction - Addressing UNIT II 	A-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en nd the the mod app he vari utions 1-world - Netw g Strate	e Design, 1 st Edition, Addison-Wesley Professional, 2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 CS: nable learners to: basic technologies and protocols used in Industrial IoT. bdels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. d problems using IIoT analytics. INTERNET OF THINGS (IoT) working – Cyber Physical Systems – Evolution of IoT – IoT Networking Compegies – IoT Sensing and Actuation. INDUSTRIAL IoT	all 3rc all 3rc a, 2011 C 3 9 9 ponents 9
 Jouni Sma Publication Publication Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC The Course value Understant Illustrate value Identify at Explain th Build solu Solve real UNIT I Introduction Addressing UNIT II Industry 4.0 	A-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en and the the mod app he variutions 1-world - Netway 5 Strate - HoT	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 CS: mable learners to: basic technologies and protocols used in Industrial IoT. bdels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. d problems using IIoT analytics. INTERNET OF THINGS (IoT) working – Cyber Physical Systems – Evolution of IoT – IoT Networking Compegies – IoT Sensing and Actuation. INDUSTRIAL IoT – Industrial Internet Systems – Industrial Sensing – Industrial Processes – B	all 3rc a, 2011 C C 3 9 ponents 9
 Jouni Sma Publication Publication Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC The Course version Understart Illustrate to Identify at Explain th Build solu Solve real UNIT I Introduction - Addressing UNIT II Industry 4.0 - Models and R 	a-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en nd the the wari utions 1-world he vari utions 1-world - Netw g Strate - IIoT Referen	e Design, 1 st Edition, Addison-Wesley Professional, 2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 CS: nable learners to: basic technologies and protocols used in Industrial IoT. odels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. d problems using IIoT analytics. INTERNET OF THINGS (IoT) working – Cyber Physical Systems – Evolution of IoT – IoT Networking Com egies – IoT Sensing and Actuation. INDUSTRIAL IoT – Industrial Internet Systems – Industrial Sensing – Industrial Processes – B nce Architecture.	all $3rc$ all $3rc$ a, 2011 C 3 C 3 y ponents y usiness
 Jouni Sma Publication Publication Ernest A Edition,20 JungHyur JungHyur 22CS921 OBJEC OBJEC The Course value Understant Illustrate value Identify at Explain th Build solu Solve real UNIT I Introduction Addressing UNIT II Industry 4.0 	a-Gamaed, Ha ons,20 CES: dams 014. n Han, CTIVE will en nd the the wari utions 1-world he vari utions 1-world - Netw g Strate - IIoT Referen	e Design,1 st Edition, Addison-Wesley Professional,2013. arri Hakonen, Algorithms and Networking for Computer Games, 2 nd Edition 17. and Andrew Rollings, "Fundamentals of Game Design", Prentice H "3D Graphics for Game Programming", Chapman and Hall/CRC, 1st Edition INDUSTRIAL IoT L T F 3 0 0 CS: mable learners to: basic technologies and protocols used in Industrial IoT. bdels and architectures of IIoT. ply different sensors for various IIoT applications. ious protocols used in IIoT. for real-world problems using IIoT. d problems using IIoT analytics. INTERNET OF THINGS (IoT) working – Cyber Physical Systems – Evolution of IoT – IoT Networking Compegies – IoT Sensing and Actuation. INDUSTRIAL IoT – Industrial Internet Systems – Industrial Sensing – Industrial Processes – B	all 3rc all 3rc a, 2011 C 3 9 9 ponents 9

Sensors - Sensor Characteristics - Sensorial Deviations - Sensing Types - Considerations - Actuat	tors
- Actuator Types - Actuator Characteristics.	
UNIT IV PROTOCOLS	9
$Processing \ topologies \ and \ types - Connectivity \ Technologies - IEEE \ 802.15.4 - Zigbee - RFID - Leee \ Solution \ Solution$	
- Wi-Fi - Communication Technologies - Constrained nodes - Networks - Infrastructure Protoco	ols -
IPV6 – Discovery Protocols – MQTT – MQTT-SN – SOAP - REST.	
UNIT V IIOT ANALYTICS AND APPLICATIONS	9
IIoT Analytics - Categorization - Use - Challenges - Mapping of analytics with IIRA Architectur	re –
Deployment of Analytics - Health care applications in industries - Inventory Management and Qua	ılity
Control – Plant Safety and Security.	
TOTAL: 45 PERIO	DS
OUTCOMES:	
Upon completion of the course, the students will be able to:	
CO1: Elaborate the basic technologies and protocols used in Industrial IoT.	
CO2: Illustrate the models and architectures of IIoT.	
CO3: Interpret and apply different sensors for various IIoT applications.	
CO4: Explain the various protocols used in IIoT.	
CO5: Build solutions for real-world problems using IIoT.	
CO6: Solve real-world problems using IIoT analytics.	
TEXT BOOKS:	
1. S. Misra, A. Mukherjee, and A. Roy, Introduction to IoT. Cambridge University Press, 2020).
2. S. Misra, C. Roy, and A. Mukherjee, Introduction to Industrial Internet of Things and Industrial	
4.0. CRC Press, 2020.	2
REFERENCES:	
1. Daniel Minoli, Building the Internet of Things with IPv6 and MIPv6: The Evolving World of	of
M2M Communications, 1st Edition, Wiley Publications, 2013.	
2. Dieter Uckelmann, Mark Harrison, Florian Michahelles, Architecting the Internet of Things	s,
Industry 4.0: The Industrial Internet of Things, Springer-Verlag Berlin Heidelberg, 2011.	,
3. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities	5

- Press, 2015. 4. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henry, "IoT
 - Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", CISCO Press, 2017.
- 5. https://onlinecourses.nptel.ac.in/noc20_cs69/preview

VERTICAL III – AI AND CLOUD ດເພາ 'πιΩ

22CS907	CLOUD FOUNDATIONS	L	Т	Р	С
2203907	(Lab Integrated)	2	0	2	3
OBJECTIVES:	·			•	•
• To dea	scribe the different ways a user can interact with Cloud.				
	cover the different compute options in Cloud and implement a variation structured storage models.	ety	of s	truct	ured
	nfer the different application managed service options in the cloud ty in the cloud is administered in Cloud.	and	out	line	how
	monstrate how to build secure networks in the cloud and identify c anagement tools.	loud	ł au	tom	ation
• To det	termine a variety of managed big data services in the cloud.				
UNIT I	INTRODUCTION TO CLOUD				6+6
Cloud Computing	g - Cloud Versus Traditional Architecture - IaaS, PaaS, and SaaS - Cl	oud	Arc	hite	cture
	104				

- The GCP Console - Understanding projects - Billing in GCP - Install and configure Cloud SDK - Use Cloud Shell - APIs - Cloud Console Mobile App.

List of Exercise/Experiments:

1. Install and configure cloud SDK.

2. Connect to computing resources hosted on Cloud via Cloud Shell.

UNIT II COMPUTE AND STORAGE

6+6

6+6

6+6

Compute options in the cloud - Exploring IaaS with Compute Engine - Configuring elastic apps with autoscaling - Exploring PaaS - Event driven programs - Containerizing and orchestrating apps - Storage options in the cloud - Structured and unstructured storage in the cloud - Unstructured storage using Cloud Storage - SQL managed services - NoSQL managed services.

List of Exercise/Experiments:

- 1. Create virtual machine instances of various machine types using the Cloud Console and the command line. Connect an NGINX web server to your virtual machine.
- 2. Create a small App Engine application that displays a short message.
- 3. Create, deploy, and test a cloud function using the Cloud Shell command line.
- 4. Deploy a containerized application.
- 5. Create a storage bucket, upload objects to it, create folders and subfolders in it, and make objects publicly accessible using the Cloud command line.

UNIT III APIS AND SECURITY IN THE CLOUD 🧷

The purpose of APIs – API Services - Managed message services - Introduction to security in the cloud - The shared security model - Encryption options - Authentication and authorization with Cloud IAM - Identify Best Practices for Authorization using Cloud IAM.

List of Exercise/Experiments:

- 1. Deploy a sample API with any of the API service.
- 2. Publish messages with managed message service using the Python client library.
- 3. Create two users. Assign a role to a second user and remove assigned roles associated with Cloud IAM. Explore how granting and revoking permissions works from Cloud Project Owner and Viewer roles.

UNIT IV NETWORKING, AUTOMATION AND MANGAEMENT TOOLS 6+6

Introduction to networking in the cloud - Defining a Virtual Private Cloud - Public and private IP address basics - Cloud network architecture - Routes and firewall rules in the cloud - Multiple VPC networks - Building hybrid clouds using VPNs - Different options for load balancing - Introduction to Infrastructure as Code - Terraform - Monitoring and management tools.

List of Exercise/Experiments:

- 1. Create several VPC networks and VM instances and test connectivity across networks.
- 2. Create two nginx web servers and control external HTTP access to the web servers using tagged firewall rules.
- 3. Configure a HTTP Load Balancer with global backends. Stress test the Load Balancer and denylist the stress test IP.
- 4. Create two managed instance groups in the same region. Then, configure and test an Internal Load Balancer with the instances groups as the backends.
- 5. Monitor a Compute Engine virtual machine (VM) instance with Cloud Monitoring by creating uptime check, alerting policy, dashboard and chart.

UNIT V

FVBIG DATA AND MACHINE LEARNING SERVICES

Introduction to big data managed services in the cloud - Leverage big data operations - Build Extract, Transform, and Load pipelines - Enterprise Data Warehouse Services - Introduction to machine learning in the cloud - Building bespoke machine learning models with AI Platform - Pre-trained machine learning APIs.

List of Exercise/Experiments: 1. Create a cluster, run a simple Apache Spark job in the cluster, then modify the number of workers in the cluster. 2. Create a streaming pipeline using one of the cloud service. 3. Set up your Python development environment, get the relevant SDK for Python, and run an example pipeline using the Cloud Console. 4. Use cloud-based data preparation tool to manipulate a dataset. Import datasets, correct mismatched data, transform data, and join data. 5. Utilize a cloud-based data processing and analysis tool for data exploration and use a machine learning platform to train and deploy a custom TensorFlow Regressor model for predicting customer lifetime value. **TOTAL: 60 PERIODS OUTCOMES:** At the end of this course, the students will be able to: **CO1**: Describe the different ways a user can interact with Cloud. **CO2**: Discover the different compute options in Cloud and implement a variety of structured and unstructured storage models. CO3: Discuss the different application managed service options in the cloud and outline how security in the cloud is administered in Cloud. CO4: Demonstrate how to build secure networks in the cloud and identify cloud automation and management tools. **CO5**: Discover a variety of managed big data services in the cloud. **CO6**: Use Cloud services to build applications. **REFERENCES:** 1. https://cloud.google.com/docs 2. https://www.cloudskillsboost.google/paths/36 3. https://nptel.ac.in/courses/106105223 4. Anthony J. Sequeira, "AWS Certified Cloud Practitioner (CLF-C01) Cert Guide", First Edition, Pearson Education, 2020. 5. AWS Documentation (amazon.com) 6. <u>AWS Skill</u> Builder 7. AWS Academy Cloud Foundations Course https://www.awsacademy.com/vforcesite/LMS_Login LIST OF EQUIPMENTS: GCP / CloudSkillBoost Platform/AWS Console /AWS Academy Learner Lab.

	Sime of the	L	Т	Р	С
22CS909	VIRTUALIZATION	3	0	0	3
OBJECTIVES:					
The Course will en	nable learners to:				
• Explain the	fundamental concepts of virtualization				
• Analyze the	role of hypervisors in hardware virtualization				
• Apply the u	nderstanding of CPU, memory (MMU), and I/O virtualization techn	iqu	es		
Assess secu	rity considerations of virtualized environments				
• Discuss stra	tegies for protecting VMs and data centers				
UNIT I	INTRODUCTION				9
Virtualization - Vir	rtual Machines - Hypervisors - Type-1 and Type-2 Hypervisors - M	Iult	iple	xing	g and
Emulation - Appro	aches to Virtualization and Paravirtualization - Benefits of Using Vi	irtu	al M	Iach	ines
Working with Virtu	ual Machines.				
UNIT II	HARDWARE VIRTUALIZATION				9

The Popek/Goldberg Theorem - Virtualization without Architectural Support: Full Virtualization - Paravirtualization - Designs Options for Type-1 Hypervisors. Hypervisors: Describing a Hypervisor - Role of Hypervisor - VMWare ESX - Citrix Hypervisor - Microsoft Hyper-V.

	or - VM ware ESX - Chrix Hypervisor - Microsoft Hyper-V.	
UNIT III	TYPES OF VIRTUALIZATIONS	10
CPU Virtualizat	ion with VT-x: Design requirements - The VT-x Architecture - KVM	. MMU
Virtualization: E	Extended Paging - Virtualizing Memory in KVM. I/O Virtualization: Benefit	ts of I/O
Interposition - P	Physical I/O - Virtual I/O Without Hardware Support- Virtual I/O with H	ardware
Support. Virtuali	zation Support in ARM Processors.	
UNIT IV	VIRTUALIZATION SECURITY	9
Fundamentals of	f Virtualization Security: Virtualization Architecture - Threats to a Vin	rtualized
Environment. Se	ecuring Hypervisors: Hypervisor Configuration and Security. Designing	Virtual
	ecurity: Comparing Virtual and Physical Networks - Virtual Network	
Considerations -	Configuring Virtual Switches for Security.	
UNIT V	VIRTUALIZATION AND AVAILABILITY	8
Availability - Pr	rotecting a Virtual Machine - Protecting Multiple Virtual Machines - Pr	otecting
-	ploying Applications in a Virtual Environment - Recent Trends in Virtualizati	-
	TOTAL: 45 PE	RIODS
OUTCOMES:		
At the end of thi	is course, the students will be able to:	
CO1: Understar	nd the basics of virtualization and its benefits.	
CO2: Assess th	e significance of hypervisors in hardware virtualization, examining their re-	oles and
implications	for system efficiency and performance	
CO3: Utilize kr	nowledge of virtualization technologies to solve practical problems and im	plement
effective sol	utions	
CO4: Analyze s	security threats and design secure virtual networks	
CO5: Discuss s	trategies to improve availability in virtual environment and for protecting V	'Ms and
data centers		
CO6: Use virtua	alization technology effectively to optimize system performance and resource	usage in
real-world se	ettings	
TEXTBOOKS:		
1. Edouard Bug	nion, Jason Nieh, Dan Tsafrir, "Hardware and Software Support for Virtual	ization",
Morgan & Cl	aypool Publishers, 2017.	
2. Matthew Port	tnoy, "Virtualization Essentials", Third Edition, Sybex - John Wiley & Sons, 2	2023.
REFERENCES		
1. Dave Shackle Wiley & Son	eford, "Virtualization Security: Protecting Virtualized Environments", Syber	x - John
	t, Danielle Ruest, Virtualization, A beginners guide, 2009, McGrawHill.	
	Cerng, Je Buller, Chuck Enstall, Richard Ruiz, Mastering Microsoft Virtua	lization
Wiley Publica		.112au011,
•	Hagen, Professional Xen Virtualization, Wiley Publication, 2008.	
T. WIIIIaIII VOII		

22CS910	DEVOPS	LT	Р	C	
	DEVOIS	3	0	0	3
OBJECTIVES	:				
The Course w	ll enable learners to:				
• Bridge	the gap between development and operations for faster, more reliable sof	tware	e rele	eases	5.
Automa	te software delivery with CI/CD pipelines.				
Package	and deploy apps efficiently using Docker containers.				
-	te infrastructure with Infrastructure as Code (IaC).				

• Monitor and troubleshoot applications in production.

	INTRODUCTION TO DEVOPS	9
Software De	velopment Methodologies - Operations Methodologies - Systems Methodologi	es -
	Release, and Deployment Concepts - Infrastructure Concepts. What is DevOps? - Dev	
	d benefits -DevOps principles and practices - 7 C's of DevOps lifecycle for business agi	
DevOps and	continuous testing. How to choose right DevOps tools? - Challenges with Dev	vOps
implementatio	n.	
UNIT II	VERSION CONTROL WITH GIT	9
Introduction t	Git version control system - Git commands for basic operations (clone, commit, push,	pull)
- Branching an	nd merging strategies - Collaboration using Git workflows.	-
UNIT III	CONTINUOUS INTEGRATION AND DELIVERY (CI/CD)	9
Introduction t	CI/CD pipelines - Benefits of CI/CD for faster deployments - Setting up a CI/CD pip	eline
	Automating builds, tests, and deployments.	
UNIT IV	CONTAINERIZATION WITH DOCKER	9
Introduction t	containerization and its benefits - Understanding Docker concepts: images, containers,	,
	ilding and managing Docker containers - Docker Compose for multi-container applicati	
	to container orchestration with Docker Swarm or Kubernetes.	
UNIT V	INFRASTRUCTURE AS CODE (IAC) AND MONITORING	9
- Learning Ia	• Infrastructure as Code (IaC) - Benefits of using IaC for repeatable infrastructure provision C with Terraform - Setting up infrastructure configurations with Terraform - Introduction d logging tools for applications - Alerting and troubleshooting techniques.	
monitoring an	TOTAL: 45 PERI	
OUTCOMES		005
	 this course, the students will be able to:	
	stand the core principles and philosophies of DevOps.	
	ment version control systems for code management and collaboration.	
CO3: Autor		
	nate software delivery pipelines using CI/CD tools.	
CO4: Utiliz	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications.	
CO4: Utiliz CO5: Confi	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications. gure infrastructure as code (IaC) for repeatable deployments.	
CO4: Utiliz CO5: Confi	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications. gure infrastructure as code (IaC) for repeatable deployments. or and maintain applications in a production environment.	
CO4: Utiliz CO5: Confi CO6: Monit	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications. gure infrastructure as code (IaC) for repeatable deployments. or and maintain applications in a production environment. KS: epak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile	ey,
CO4: Utiliz CO5: Confi CO6: Monit TEXT BOOH 1. De 20	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications. gure infrastructure as code (IaC) for repeatable deployments. or and maintain applications in a production environment. KS: epak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile	ey,
CO4: Utiliz CO5: Confi CO6: Monit TEXT BOOH 1. De 20	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications. gure infrastructure as code (IaC) for repeatable deployments. or and maintain applications in a production environment. XS: epak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 19. mifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016.	ey,
CO4: Utiliz CO5: Confi CO6: Monit TEXT BOOR 1. De 20 2. Jer REFERENC 1. Gene Agility 2. Jez Hu	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications. gure infrastructure as code (IaC) for repeatable deployments. or and maintain applications in a production environment. XS: epak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 19. mifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016.	Class
CO4: Utiliz CO5: Confi CO6: Monit TEXT BOOH 1. De 20 2. Jer REFERENC 1. Gene Agility 2. Jez Hu and De	nate software delivery pipelines using CI/CD tools. e containerization technologies for packaging and deploying applications. gure infrastructure as code (IaC) for repeatable deployments. or and maintain applications in a production environment. XS: epak Gaikwad, Viral Thakkar, "DevOps Tools: from Practitioner's Point of View", Wile 19. mifer Davis, Ryn Daniels, "Effective DevOps", O'Reilly Media, 2016. ES: Kim, Jez Humble, Patrick Debois, "The DevOps Handbook: How to Create World-O v, Reliability, and Security in Technology Organizations", IT Revolution Press, 2016. unble, Gene Kim, "Continuous Delivery: Reliable Software Releases Through Build, "	Class Test,

22CS911

DATA ENGINEERING IN CLOUD

 L
 T
 P
 C

 3
 0
 0
 3

OBJECTIVES:

The Course will enable learners to:

- \checkmark Grasp the fundamentals of data engineering, emphasizing cloud-based data access.
- ✓ Construct robust and secure data pipelines using Cloud services.
- ✓ Select and implement appropriate data storage solutions while prioritizing pipeline security.

Utilize cloud tools for handling extensive data for machine learning purposes. \checkmark \checkmark Efficiently analyze, visualize, and automate data pipelines to streamline operations. 8 UNIT I **INTRODUCTION** Introduction to data Engineering - The Data Engineering Life Cycle - Data Engineering and Data Science - Data-Driven Organizations: Data-driven decisions - The data pipeline - The role of the data engineer in data-driven organizations - Modern data strategies - The Elements of Data: The five Vs of data - volume, velocity, variety, veracity, and value. Demo: Accessing and Analyzing Data by Using Amazon S3. **UNIT II** SECURE AND SCALABLE DATA PIPELINES 10 The evolution of data architectures - Modern data architecture on AWS - Modern data architecture pipeline: Ingestion and storage - Processing and consumption - Streaming analytics pipeline - Security of analytics workloads - Scaling - Creating a scalable infrastructure and components. ETL and ELT comparison - Data wrangling. STORING AND ORGANIZING DATA **UNIT III** 9 Comparing batch and stream ingestion - Batch ingestion processing - Purpose-built ingestion tools - AWS Glue for batch ingestion processing - Kinesis for stream processing - Scaling considerations for batch processing and stream processing - Storage in the modern data architecture - Data lake storage - Data warehouse storage - Purpose-built databases - Storage in support of the pipeline - Securing storage. **UNIT IV** PROCESSING BIG DATA AND DATA FOR ML 10 Big data processing concepts - Apache Hadoop - Apache Spark - Amazon EMR - Managing your Amazon EMR clusters - Apache Hudi - The ML lifecycle - Collecting data - Applying labels to training data with known targets - Preprocessing data - Feature engineering - Developing a model - Deploying a model - ML infrastructure on AWS - SageMaker - Amazon CodeWhisperer - AI/ML services on AWS. UNIT V DATA ANALYSIS AND VISUALIZATION 8 Analyzing and Visualizing Data: Considering factors that influence tool selection - Comparing AWS tools and services - Selecting tools for a gaming analytics use case. Automating the Pipeline: Automating infrastructure deployment - CI/CD - Automating with Step Functions. **TOTAL: 45 PERIODS OUTCOMES:** At the end of this course, the students will be able to: **CO1:** Understand data engineering, pipelines & access data in the cloud. **CO2:** Build secure & scalable data pipelines using AWS services. **CO3:** Choose the right data storage & secure your data pipelines. **CO4:** Process big data for machine learning with cloud tools. **CO5:** Analyze & visualize data and automate data pipelines. **CO6:** Apply best practices in data governance, compliance, and ethics throughout the data engineering process, ensuring responsible handling and usage of data. **TEXT BOOKS:** 1. Martin Kleppman, "Data Engineering: Building Reliable Scalable Data Systems", O'Reilly Media, 2017. 2. Wes McKinney, "Python for Data Analysis", 2nd Edition, O'Reilly Media, 2017. **REFERENCES:** 1. Martin Kleppman, "Designing Data-Intensive Applications", O'Reilly Media, 2017. 2. AWS Documentation (amazon.com) 3. AWS Skill Builder 4. AWS Academy Data Engineering Course - https://www.awsacademy.com/vforcesite/LMS Login

22CS933	MACHINE LEARNING FOR NLP IN CLOUD	L	T	P	С
		3	0	0	3
OBJECTIVES: The Course will	enable learners to:				
	how to apply the ML pipeline to NLP.				
	it text extraction to obtain data from web pages.				
-	blution that uses AWS services to transcribe and translate text from mul	tima	lia		
	plution using a combination of algorithms and Amazon Machine Learni			on N	/ II.)
services.	Sution using a combination of argonumits and Amazon Machine Learni	ng (r	inaz	on r	nL)
	use cases to use generative AI and LLMs.				
-	Is with AWS generative AI services.				
UNIT I	Introduction to NLP				8
	Problems Solved by NLP – NLP Roles - NLP and ML – Common NLP	task	s /	Annl	
	lem - Evolution of NLP architectures.	task	5 1	1 PPI	y
UNIT II	Processing Text for NLP				10
	overview - Getting text - Extracting Text from Webpages and Images -	Text 1	oreni	nces	
unstructured data the algorithms for	 xt - Encoding and Vectorizing Text - Advanced processing - Storing a – Implement Sentiment Analysis - Identifying the steps for text processor sentiment analysis. 				ning
UNIT III	Information Extraction				9
Working with Er	action overview - Types of information extraction - Implementing informations - Topic Modeling - Identifying the approach - Implementing Tophend, Neural Topic Model (NTM). Translating Languages				
	nguage issues - Detecting and translating languages - Transcribing and v	vocal	izino	tovi	-
	theses - Implementing a Multilingual Solution.	ocar	IZIIIE		
UNIT V	Generative AI				9
	Amazon Bedrock Overview - Introducing foundations models and large	langi	lage	mod	-
	nitecture - LLMs configuration parameters - Introducing prompt engine				
	Tasks - Adapting LLMs - Application Integration.				
	ΤΟΤΑ	AL: 4	5 PI	ERI	ODS
OUTCOMES:					
At the end of the	is course, the students will be able to:				
	e ML pipeline to NLP.				
1	ent text extraction to obtain data from webpages.				
	solution that uses AWS services to transcribe and translate text from mu				
	olution using a combination of algorithms and Amazon Machine Learn	ing (Ama	zon	ML)
services.					
•	use cases to use generative AI and LLMs.				
TEXT BOOKS:	As with AWS generative AI services.				
	Premkumar Rangarajan, Natural Language Processing with AWS AI Se	rvica	Do	akt	
Publication			5, I a	CKI	
REFERENCES					
 Saket S R learning i AWS Do 	Mengle, Maximo Gurmendez, Mastering Machine Learning on AWS: An Python using SageMaker, Apache Spark, and TensorFlow, Packt Pub cumentation (amazon.com)				
3. AWS Ski 4. AWS	Il Builder Academy Machine Learning for Natural Language Proces	sing	C	ourse	e -

22CS934	CLOUD SERVICES MANAGEMENT	L		P	С
		3	0	0	3
OBJECTIVES:					
The Course will ena					
	oud Service Management terminology, definition & concepts				
1	contrast cloud service management with traditional IT service man	<u> </u>			
	egies to reduce risk and eliminate issues associated with adoption o				
	priate structures for designing, deploying and running cloud-ba	sed	serv	/ice	es in a
business envi					
	benefits and drive the adoption of cloud-based services to solve real	l wo	orld p	prot	
UNIT I	CLOUD SERVICE MANAGEMENT FUNDAMENTALS				9
	he Essential Characteristics, Basics of Information Technology Ser				
	lanagement, Service Perspectives, Cloud Service Models, Cloud Se	ervic	e De	eplo	oymen
Models.				<u> </u>	
UNIT II	CLOUD SERVICES STRATEGY				9
	lamentals, Cloud Strategy Management Framework, Cloud Policy				
	nagement, IT Capacity and Utilization, Demand and Capacity m	natc	hing	, D	eman
Queueing, Change M	lanagement, Cloud Service Architecture.				
UNIT III	CLOUD SERVICE MANAGEMENT				9
Cloud Service Refere	ence Model, Cloud Service LifeCycle, Basics of Cloud Service Des	sign	, De	alir	ng wit
	Services, Benchmarking of Cloud Services, Cloud Service Capacit	-			-
	and Migration, Cloud Marketplace, Cloud Service Operations Man	•		<u> </u>	
UNIT IV	CLOUD SERVICE ECONOMICS	0			9
Pricing models for (Cloud Services, Freemium, Pay Per Reservation, Pay per User, S	lubs	cript	ion	base
-	ent of Cloud-based Services, Capex vs Opex Shift, Cloud service Cha		-		
Models.		- 0-	0, -		
UNIT V	CLOUD SERVICE GOVERNANCE & VALUE				9
	finition, Cloud Governance Definition, Cloud Governance Fr	ram	ewor	·k	Cloue
	are, Cloud Governance Considerations, Cloud Service Mod				
	of Cloud Services, Measuring the value of Cloud Services, Balance				
Cost of Ownership.	of cloud per rices, freusuring the value of cloud per rices, Balance	4.0		are	
					, 1000
	TOTA	AL:	45 F	'ER	
OUTCOMES	ТОТА	AL:	45 F	PEF	RIOD
OUTCOMES: At the end of this co		۹L:	45 F	PEF	
At the end of this co	ourse, the students will be able to:				RIOD
At the end of this co CO1: Exhibit cloud-	ourse, the students will be able to: design skills to build and automate business solutions using cloud to	echi	nolog	gies	RIOD
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to	echi	nolog	gies	RIOD
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement tow rvices	echi	nolog	gies	RIOD
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement tow rvices world problems using Cloud services and technologies	echi	nolog	gies	RIOD
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment	echi	nolog	gies	RIOD
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment	echi ware	nolog ds ac	gies lop	tion o
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres	echi ware	nolog ds ac	gies lop	tion o
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p challenges effe	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres	echi ware	nolog ds ac	gies lop	tion o
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p challenges effe TEXT BOOKS:	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres ectively.	echi waro	nolog ds ac	gies lopt e bu	tion o
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p challenges effe TEXT BOOKS: 1. Enamul Haqu	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres ectively.	echi waro	nolog ds ac	gies lopt e bu	tion o
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p challenges effe TEXT BOOKS: 1. Enamul Haqu Cloud Era", E	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement tow rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres ectively.	echi ward s di	nolog ds ac verse geme	gies lopt e bu	tion c
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p challenges effe TEXT BOOKS: 1. Enamul Haqu Cloud Era", E 1. Thomas Erl, 1	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres ectively. The, "Cloud Service Management and Governance: Smart Service Ma Enel Publications, 2023. Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Conception	echi ward s di	nolog ds ac verse geme	gies lopt e bu	tion c
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p challenges effe TEXT BOOKS: 1. Enamul Haqu Cloud Era", E 1. Thomas Erl, T Architecture"	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement tow rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres ectively.	echi ward s di	nolog ds ac verse geme	gies lopt e bu	tion c
At the end of this co CO1: Exhibit cloud- CO2: Possess Stron cloud-based se CO3: Solve the real CO4: Develop and d CO5: Explain securi CO6: Demonstrate p challenges effe TEXT BOOKS: 1. Enamul Haqu Cloud Era", E 1. Thomas Erl, I Architecture"	burse, the students will be able to: design skills to build and automate business solutions using cloud to g theoretical foundation leading to excellence and excitement to rvices world problems using Cloud services and technologies eploy services on the cloud and set up a cloud environment ty challenges in the cloud environment proficiency in integrating cloud technologies and services to addres ectively. The, "Cloud Service Management and Governance: Smart Service Ma Enel Publications, 2023. Ricardo Puttini, Zaigham Mohammad, "Cloud Computing: Conception	echi ward s di anaş	nolog ds ac verse geme Tech	gies lopt e bu	tion c

2015.

- 2. Praveen Ayyappa, "Economics of Cloud Computing", LAP Lambert Academic Publishing, 2020.
- 3. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, "Mastering Cloud Computing Foundations and Applications Programming", Elsevier, 2013.

VERTICAL IV – HIGH PERFORMANCE COMPUTING

2243/011	MULTI-CORE ARCHITECTURE AND	L	Т	Р	C	
22AM911	PROGRAMMING	3	0	0	3	
OBJECTIVES:						
	ne need for multi-core processors, and their architecture.					
• To understand the challenges in parallel and multi-threaded programming.						
	he various parallel programming paradigms.					
	ti core programs.					
To design parall					<u> </u>	
UNIT I	MULTI-CORE PROCESSORS				9	
	e architectures – SIMD and MIMD systems – Interconnection ne					
	Memory Architectures – Cache coherence - Performance Issue	s - Pa	aralle	l pro	gram	
design					.	
UNIT II	PARALLEL PROGRAM CHALLENGES				9	
	ity - Synchronization and data sharing - Data races - Synchr					
	phores, barriers) – deadlocks and livelocks – communication	on be	etwee	en thi	reads	
	nals, message queues and pipes).				T -	
UNIT III	SHARED MEMORY PROGRAMMING WITH OpenMP				9	
	g OpenMP programs, The Trapezoidal rule, The parallel for d	irecti	ve, s	ched	uling	
loops- Producers and co						
UNIT IV	DISTRIBUTED MEMORY PROGRAMMING WITH M				9	
1 0	- MPI constructs - libraries - MPI send and receive - Point-to-	point	and	Colle	ctive	
	derived datatypes – Performance evaluation.	<u> </u>				
UNIT V	PARALLEL PROGRAM DEVELOPMENT	-	•		9	
Case studies - n-Body s	olvers – Tree Search – OpenMP and MPI implementations and				ODC	
OUTCOMES:		AL:	45 P	EKI	ODS	
	se, the students will be able to:					
	core architectures and identify their characteristics and challeng	TAS				
	ues in programming Parallel Processors.	,03.				
-	s using OpenMP and MPI.					
	programming solutions to common problems.					
	ontrast programming for serial processors and programming fo	r nara	allel			
processors.		- r				
-	arious concepts of multi-core architectures.					
TEXT BOOKS:	L					
1. Peter S. Pacheco	o, "An Introduction to Parallel Programming", Morgan-Kauffm	an/El	lsevie	er, 20	11.	
	Multicore Application Programming for Windows, Linux, a					
Pearson, 2011.						
REFERENCES:						
1. Michael J Quinr	n, "Parallel programming in C with MPI and OpenMPI", Tata M	/lcGra	aw H	ill,20	03.	
	drini, "Shared Memory Application Programming Concepts	s and	l Stra	ategie	es in	
	cation Programming, ", 1st Edition, Morgan Kaufmann, 2015.					
3. Yan Solihin, "Fundamentals of Parallel Multicore Architecture", CRC Press, 2015.						

22AM912	GPU (COMPUTING		L 3	T	P 0	<u>C</u> 3
OBJECTIVES:				3	0	0	3
The Course will enable learners to:							
• To understand the basics of GPU Architectures and CUDA Programming.							
	n synchronization using CUI		0 0				
	uss memories and its impact						
	erstand the various parallel a	-					
	n the basics of OPENCL.	0					
UNIT I	GPU ARCHITECTURES	AND CUDA PROGRA	AMMING				9
Heterogeneous Para	lel Computing – Architectur	e of a modern GPU – Par	rallel Program	nmin	g lan	guag	es and
models - GPU Con	puting – Introduction to Da	ta Parallelism and CUE	DA C: Data	Parall	lelisr	n – C	CUDA
	- A vector additional Kerne						
functions and Thread	ling.		-				
UNIT II	MULTI-DIMENSIONAL	DATA & SYNCHRON	NIZATION				9
CUDA Thread Org	anization - Mapping Threa	nds to Multi-Dimension	nal Data – S	Syncl	nroni	zatio	n and
Transparent Scalabil	ity – Assigning resources to	Blocks – Querying Devic	ce Properties	-Th	read	Sche	duling
and Latency Toleran	ce.		_				
							9
UNIT III	CUDA MEMORIES & Pl						
CUDA Memories –	Memory Access Efficiency –	CUDA Device Memory					emory
CUDA Memories –		CUDA Device Memory					emory
CUDA Memories – Traffic – Performan	Memory Access Efficiency –	CUDA Device Memory and Thread Execution	– Global M	emor			emory
CUDA Memories – Traffic – Performan	Memory Access Efficiency – ce Considerations - Warps	CUDA Device Memory and Thread Execution nstruction Mix and Thre	– Global M	emor			emory
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV	Memory Access Efficiency – ce Considerations - Warps g of Execution Resources – 1	CUDA Device Memory and Thread Execution nstruction Mix and Thre	– Global M ad Granulari	emor			emory idth -
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU	CUDA Device Memory and Thread Execution nstruction Mix and Thre	– Global M ad Granulari	emor			emory idth -
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope	Memory Access Efficiency – ice Considerations - Warps g of Execution Resources – I ALGORITHMS ON GPU nvolution – Prefix Sum – Sp	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu	– Global M ad Granulari Iltiplication.	emor ty.	y Ba	andw	emory idth - 9 9
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu	- Global M ad Granulari Iltiplication.	ty.	emoi	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime.	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu	- Global M ad Granulari Iltiplication.	ty.	emoi	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime.	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program	- Global M ad Granulari Iltiplication.	ty.	emoi	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec the course, the students w	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program	 Global M ad Granulari iltiplication. uming model TO 	emor ty. – M TAL	emon	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand t	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – I ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec f the course, the students w he basics of GPU Architectur	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program	 Global M ad Granulari iltiplication. uming model TO 	emor ty. – M TAL	emon	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss synce	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec the course, the students w he basics of GPU Architectur hronization using CUDA.	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program	 Global M ad Granulari iltiplication. uming model TO 	emor ty. – M TAL	emon	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU	Memory Access Efficiency – ace Considerations - Warps <u>g of Execution Resources – I</u> <u>ALGORITHMS ON GPU</u> <u>nvolution – Prefix Sum – Sp</u> <u>OPENCL BASICS</u> aCL Platform Model – Exec the basics of GPU Architectur hronization using CUDA. DA memories and its impac	CUDA Device Memory and Thread Execution nstruction Mix and Thre arse Matrix – Vector Mu cution Model – Program all be able to: es and implement simple t on performance.	 Global M ad Granulari iltiplication. uming model TO 	emor ty. – M TAL	emon	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – 2 Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU CO4: Design vario	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS hCL Platform Model – Exec the course, the students we be basics of GPU Architectur hronization using CUDA. DA memories and its impac us parallel algorithms on GP	CUDA Device Memory and Thread Execution <u>nstruction Mix and Thre</u> arse Matrix – Vector Mu cution Model – Program ill be able to: es and implement simple t on performance. U.	 Global M ad Granulari iltiplication. uming model TO 	emor ty. – M TAL	emon	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU CO4: Design vario CO5: Solve simple	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec the course, the students we basics of GPU Architectur hronization using CUDA. DA memories and its impac us parallel algorithms on GP problems using parallel al	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program all be able to: es and implement simple t on performance. U. gorithms.	 Global M ad Granulari iltiplication. uming model TO 	emor ty. – M TAL	emon	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU CO4: Design vario CO5: Solve simple CO6: Apply Open	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS hCL Platform Model – Exec the course, the students we be basics of GPU Architectur hronization using CUDA. DA memories and its impac us parallel algorithms on GP	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program all be able to: es and implement simple t on performance. U. gorithms.	 Global M ad Granulari iltiplication. uming model TO 	emor ty. – M TAL	emon	andw ry Me	emory idth - 9 9 odel -
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU CO4: Design vario CO5: Solve simple CO6: Apply Open TEXT BOOKS:	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS hCL Platform Model – Exec the course, the students we basics of GPU Architectur hronization using CUDA. DA memories and its impac us parallel algorithms on GP problems using parallel al CL to solve programs and i	CUDA Device Memory and Thread Execution <u>nstruction Mix and Thre</u> arse Matrix – Vector Mu cution Model – Program ill be able to: es and implement simple t on performance. U. gorithms. mprove performance.	 Global M ad Granulari iltiplication. iming model TO CUDA Prog 	emor ty. – M PTAL grams	emor .: 45	ry Me	emory idth - 9 9 odel -
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU CO4: Design vario CO5: Solve simple CO6: Apply Open TEXT BOOKS: 1. David Kirk a	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec the course, the students we he basics of GPU Architectur hronization using CUDA. DA memories and its impac us parallel algorithms on GP problems using parallel al CL to solve programs and i	CUDA Device Memory and Thread Execution nstruction Mix and Thre device Matrix – Vector Mu cution Model – Program and implement simple es and implement simple t on performance. U. gorithms. mprove performance.	 Global M ad Granulari iltiplication. iming model TO CUDA Prog 	emor ty. – M PTAL grams	emor .: 45	ry Me	emory idth - 9 9 odel -
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU CO4: Design vario CO5: Solve simple CO6: Apply Open TEXT BOOKS: 1. David Kirk a Approach, M	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec f the course, the students we be basics of GPU Architectur hronization using CUDA. DA memories and its impact us parallel algorithms on GP problems using parallel al CL to solve programs and its and Wen-mei Hwu, Programs organ Kaufmann, Second Edu	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program all be able to: es and implement simple t on performance. U. gorithms. mprove performance. hing Massively Parallel I lition, 2013.	 Global M ad Granulari Itiplication. 	emor ty. – M TAL grams	emon : 45 s.	ndwi ry Me PER	emory idth - 9 odel - IODS
CUDA Memories – Traffic – Performan Dynamic Partitionin UNIT IV Parallel Patterns: Co UNIT V Introduction – Ope OpenCL Runtime. OUTCOMES: Upon completion o CO1: Understand th CO2: Discuss sync CO3: Elaborate CU CO4: Design vario CO5: Solve simple CO6: Apply Open TEXT BOOKS: 1. David Kirk a Approach, M 2. Benedict Gas	Memory Access Efficiency – ace Considerations - Warps g of Execution Resources – 1 ALGORITHMS ON GPU nvolution – Prefix Sum – Sp OPENCL BASICS nCL Platform Model – Exec the course, the students we he basics of GPU Architectur hronization using CUDA. DA memories and its impac us parallel algorithms on GP problems using parallel al CL to solve programs and i	CUDA Device Memory and Thread Execution nstruction Mix and Thre J arse Matrix – Vector Mu cution Model – Program all be able to: es and implement simple t on performance. U. gorithms. mprove performance. hing Massively Parallel I lition, 2013.	 Global M ad Granulari Itiplication. 	emor ty. – M TAL grams	emon : 45 s.	ndwi ry Me PER	emory idth - 9 odel - IODS

REFERENCES:

- 1. David Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, "Heterogeneous Computing with OpenCL 2.0", Third Edition, Morgan Kaufman, 2015.
- 2. John L.Hennessy and David A. Patterson, "Computer Architecture A Quantitative Approach", Sixth Edition, Morgan Kaufman, 2017.
- 3. NPTEL Courses:
 - a. GPU Architectures And Programming -

https://onlinecourses.nptel.ac.in/noc23_cs61/preview

22EC601	DIGITAL SIGNAL PROCESSING	L	Т	P	С			
		3	0	0	3			
OBJECTIVES								
	l enable learners to:							
	e discrete time signals & systems and represent in frequency domain.							
	e principles of z-transforms to finite difference equations.							
	liarized with various structures of IIR and FIR systems.							
_	nd realize various digital filters for digital signal processing.							
Understand the architecture of various digital signal processors.								
UNIT I	INTRODUCTION			9				
	f systems: Continuous, discrete, linear, causal, stability, dynamic, recu							
	f signals: continuous and discrete, energy and power; mathematical repr	esen	tatior	of s	signals,			
	iques, quantization, quantization error, Nyquist rate, aliasing effect.							
UNIT II	DISCRETE TIME SYSTEM ANALYSIS			9				
	d its properties, inverse z-transforms; difference equation - Solution							
	liscrete systems - Stability analysis, frequency response - Convolu	tion	– (Li	inea	r and			
circular convolu								
UNIT III	DISCRETE FOURIER TRANSFORM & COMPUTATION			9				
	Transform- properties, magnitude and phase representation - Comput	atior	n of D	FT	using			
FFT algorithm -	- DIT &DIF using radix 2 FFT – Butterfly structure.							
UNIT IV	DESIGN OF DIGITAL FILTERS			9				
	realization – Parallel & cascade forms. FIR design: Windowing Tech							
	ows - Linear phase characteristics. Analog filter design - Butterwork							
	IIR Filters, digital design using impulse invariant and bilinear transf	orma	ation	War	ping,			
pre warping.								
UNIT V	DIGITAL SIGNAL PROCESSORS			9				
	Architecture of TMS320C50X- Features - Addressing Formats - F	Funct	ional	mo	des -			
Architecture of								
	TO	DTA	L: 45	5 PE	RIODS			
OUTCOMES:								
	nis course, the students will be able to:							
	he properties of various Signals and Systems.							
11.	ransform technique in Discrete Time signal analysis.							
	Discrete Time Linear Time-Invariant (LTI) systems utilizing Discrete-	Tim	e Fou	rier				
Transform								
_	decimation-in time - FFT and decimation-in-frequency - FFT for redu	cing	the					
-	onal complexity of DFT.							
•	IR and FIR Filters on digital signal processors.							
	ze the architecture of programmable digital signal processors.							
TEXT BOOKS				_				
	tra, Digital Signal Processing: Computer Based Approach, 4th edition,	ТΜ	H, Ne	ew I	Delhi,			
India, 20	013.							
	11/							

- 2. J. G. Proakis, D.G. Manolakis and D. Sharma, Digital Signal Processing Principles, Algorithms and Applications, 4th edition, Pearson Education, Noida, India-2014.
- 3. Lonnie C. Ludeman, "Fundamentals of Digital Signal Processing", Wiley -2013.

REFERENCES:

- 1. Poorna Chandra S, Sasikala. B. Digital Signal Processing, Vijay Nicole/TMH, 2013.
- 2. Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using Matlab", Cengage Learning, 2014.
- 3. Sen M. Kuo, Woon-Seng S. Gan, "Digital Signal Processors, Architecture, Implementations & Applications", Pearson, 2013.
- 4. Dimitris G.Manolakis, Vinay K. Ingle, applied Digital Signal Processing, Cambridge, 2012.
- 5. Oppenhiem V.A.V and Schaffer R.W, Discrete time Signal Processing, 3rd edition, Prentice Hall, New Jersey, US, 2013.

22CS924	QUANTUM COMPUTING	L	Т	P	С
		3	0	0	3
OBJECTIVES					
	ll enable learners to:				
•	the behaviour of basic quantum algorithms.				
	simple quantum algorithms and information channels in the quantum ci		it mo	del.	
11.	ne quantum algorithms in superdense coding and quantum teleportation	•			
•	the algorithms with super-polynomial speed-up.				
	e a simple quantum error-correcting code.				
UNIT I	FOUNDATION			9	
	aditional computing - Church-Turing thesis - circuit model of comp				
	quantum physics – quantum physics and computation – Dirac notation a				
	operators - the spectral theorem - functions of operators - tensor	pro	ducts	– S	chmi
decomposition	theorem.				
UNIT II	QUBITS AND QUANTUM MODEL OF COMPUTATION			9	
UNIT II State of a quan	tum system - time evolution of a closed system - composite systems			urem	
UNIT II State of a quan mixed states an	ntum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gat			urem	
UNIT II State of a quan mixed states an of quantum gate	ntum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gat es – unitary transformations – quantum circuits.			urem versa	
UNIT II State of a quan mixed states an of quantum gate UNIT III	itum system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gat es – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I	tes –	- univ	urem versa	l sets
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod	itum system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gat es – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilis	tes – tic v	- univ	urem versa 9 s qua	nl sets
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph	itum system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gat es – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilis ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm –	tes – tic v Sim	- univ	urem versa 9 s qua	nl sets
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha	Atum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gat es – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilis hase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – hase estimation and quantum Fourier Transform – eigenvalue estimation.	tes – tic v Sim	- univ	urem versa 9 s qua algo	nl sets
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV	Atum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ding – quantum teleportation – applications of teleportation – probabilist asse kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II	tic v Sim	- univ versus	urem versa 9 s qua algo 9	untum rithm
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p	Atum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilision is kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a	tic v Sin	ersus	yersa 9 s qua algo 9 for	antum rithm order
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin	Atum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I Ining – quantum teleportation – applications of teleportation – probabilist ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's and guartum search algorithms – hidden subgroups – Grover's quantum search algorithm search algorithm – the second search algorithm – the second	tic v Sin	ersus versus non's ithm	yersa 9 s qua algo 9 for	antum rithm order
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification	tum system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gat es – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilist ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – lise estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a ag discrete logarithms – hidden subgroups – Grover's quantum search algorithm – – quantum	tic v Sin	ersus orrsus on's rithm om – on	yersa 9 s qua algo 9 for	antum rithm order
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification quantum cou	atum system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gat es – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilis ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – ase estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a ag discrete logarithms – hidden subgroups – Grover's quantum search algorithm – — quantum amplitude estimation	tes – tic v Sim llgor orith natic babi	ersus versus non's ithm	yersa 9 s qua algo 9 for ampl	antum rithm order
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification	Atum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ding – quantum teleportation – applications of teleportation – probabilist ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – these estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's and giscrete logarithms – hidden subgroups – Grover's quantum search algorithm – amplitude estimation problem – searching without knowing the success problem QUANTUM COMPUTATIONAL COMPLEXITY AND ERROI	tes – tic v Sim llgor orith natic babi	ersus orrsus on's rithm om – on	yersa 9 s qua algo 9 for	antum rithm order
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification quantum cou UNIT V	Atum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gate es – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ding – quantum teleportation – applications of teleportation – probabilist ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a ag discrete logarithms – hidden subgroups – Grover's quantum search algorithm – amplitude estimation nuture amplitude estimation quantum amplitude estimation Augustum amplitude estimation QUANTUM COMPUTATIONAL COMPLEXITY AND ERROI CORRECTION	tic v Sin Ilgor orith natic babi	ersus on's ithm m – on lity.	yersa 9 s qua algo 9 for amp	intum rithm order litude
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification quantum cou UNIT V Computational	Atum system – time evolution of a closed system – composite systems and general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ding – quantum teleportation – applications of teleportation – probabilist ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a g discrete logarithms – hidden subgroups – Grover's quantum search algorithm – the success problem inting – searching without knowing the success problem (CORRECTION) complexity – black-box model – lower bounds for searching – general	tes – tic v Sin Ilgor orith natic babi R	ersus versus ion's ithm im – n lity.	yersa 9 s qua algo 9 for amp 9 box	I sets
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification quantum cou UNIT V Computational bounds – polyn	tum system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilist ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a g discrete logarithms – hidden subgroups – Grover's quantum search algorithm – the success problem – searching without knowing the success problem for the success problem – searching without knowing the success problem – guantum complexity – black-box model – lower bounds for searching – generation and method – block sensitivity – adversary methods – classical	tes – tic v Sin Ilgor orith natic babi R al bl erro	ersus on's ithm im – n lity. ack-lor co	yersa 9 s qua algo 9 for ampl 9 box 1 rrect	I sets
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification quantum cou UNIT V Computational bounds – polyn classical three-b	tum system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ling – quantum teleportation – applications of teleportation – probabilist ase kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a gdiscrete logarithms – hidden subgroups – Grover's quantum search algorithm – general quantum amplitude estimation application to complexity – black-box model – lower bounds for searching – general quantum error correction – three- and nine-quantum error correction – three-	tes – tic v Sin Ilgor orith natic babi R al bl erro	ersus on's ithm im – n lity. ack-lor co	yersa 9 s qua algo 9 for ampl 9 box 1 rrect	I sets
UNIT II State of a quan mixed states an of quantum gate UNIT III Superdense cod algorithms – ph – Quantum pha UNIT IV Order-finding p finding – findin amplification quantum cou UNIT V Computational bounds – polyn classical three-b	turn system – time evolution of a closed system – composite systems ad general quantum operations – quantum circuit model – quantum gates – unitary transformations – quantum circuits. QUANTUM ALGORITHMS-I ting – quantum teleportation – applications of teleportation – probabilist asse kick-back – the Deutsch algorithm – the Deutsch- Jozsa algorithm – the se estimation and quantum Fourier Transform – eigenvalue estimation. QUANTUM ALGORITHMS – II problem – eigenvalue estimation approach to order finding – Shor's a g discrete logarithms – hidden subgroups – Grover's quantum search algorithm – generating – searching without knowing the success problem testimation. QUANTUM COMPUTATIONAL COMPLEXITY AND ERROI CORRECTION complexity – black-box model – lower bounds for searching – generation and method – block sensitivity – adversary methods – classical bit code – fault tolerance – quantum error correction – three- and nine-quantum computation.	tics - tic v Sin llgor orith natic babi R al bl errc ubit	ersus versus inon's ithm im – n lity. ack-l or co quan	<pre>urem versa ve</pre>	I sets intum rithm order litude

At the end of this course, the students will be able to:

- **CO1:** Analyse the behaviour of basic quantum algorithms.
- **CO2:** Discuss simple quantum algorithms and information channels in the quantum circuit model.
- CO3: Apply the quantum algorithms in superdense coding and quantum Teleportation.
- **CO4:** Analyse the algorithms with super polynomial speed-up.

CO5: Illustrate a simple quantum error-correcting code.

CO6: Elaborate various quantum alogirthms.

TEXT BOOKS:

- 4. P. Kaye, R. Laflamme, and M. Mosca, "An introduction to Quantum Computing", Oxford University Press, 2007.
- 5. E. Rieffel and W. Polak, "Quantum Computing A Gentle Introduction", The MIT Press Cambridge, 2011.

REFERENCES:

- 6. Jack D. Hidary "Quantum Computing: An Applied Approach", Springer, 2019.
- 7. V. Sahni, "Quantum Computing", Tata McGraw-Hill Publishing Company, 2007.
- 8. Michael A. Nielsen and Issac L. Chuang, "Quantum Computation and Quantum Information", Tenth Edition, Cambridge University Press, 2010.

ENGINEERING COLLEGE

22 4 3 40 1 2		L	Т	Р	С
22AM913	SCALABLE MACHINE LEARNING	3	0	0	3
OBJECTIVES:	· · · · · · · · · · · · · · · · · · ·			•	
• Discuss the basi	ics of how distributed computing is applied in sca	ling up	mac	hine	e learning process.
	achine learning frameworks for parallel learning.				
	Machine Learning Algorithms that can scale up. litional ML algorithms and Scalable ML algorithr	ne			
ũ	tive learning for scalability.				
	ale real-world problems using GPUs and Multi-co	ore syste	ems.		
UNIT I	INTRODUCTION			9)
Scaling Up – Reasons -	- Key Concepts – Platforms – Distributed Machin	ne Learr	ning	-St	ages of ML
	Technologies in ML Pipeline - Distributed Comp				
Systems Architecture -	Ensemble Models – Challenges.	-			
UNIT II	FRAMEWORKS FOR SCALLING UP			9)
Apache Spark Architec	cture – PySpark – MapReduce for Massively Pa	rallel L	earn	ing	- Uniformly Fine-
Grained Data-Parallel (Computing – GP-GPU.			-	-
UNIT III	LEARNING ALGORITHMS			ç)
PSVM: Parallel Suppo	rt Vector Machines with Incomplete Cholesky	Factoriz	zatio	n -]	PSVM Algorithm -
	ization Using Hardware Accelerators - SMO Al				
e	ecision Trees – LambdaMART - Large-Scale Sp	ectral (Clust	erin	g with MapReduce
and MPI.					
UNIT IV	ALTERNATIVE LEARNING			9	
	ng - Limits Due to Bandwidth and Latency - P				
	llel Learning Algorithms - Global Update Rules				
1	ctorization - Distributed Coalitional Learning - E	xtensio	n of	Dis(Co to Classification
ĕ	Scale Feature Selection.				
UNIT V	APPLICATIONS			9	
	or Vision with GPUs - Standard Pipeline – GPUs -				
	Mining Tree-Structured Data on Multicore System	ns - Mu	ltico	ore C	Challenge - Memory
Optimizations - Adaptiv	ve Parallelization - Empirical Evaluation.				
]	TOT	AL: 45 PERIODS
	116				

OUTCOMES:

At the end of this course, the students will be able to:

- **CO1**: Discuss the basics of how distributed computing is applied in scaling up machine learning process.
- **CO2**: Use scalable machine learning frameworks for parallel learning.
- CO3: Apply parallel Machine Learning Algorithms that can scale up.
- **CO4**: Distinguish traditional ML algorithms and Scalable ML algorithms.
- CO5: Discuss alternative learning for scalability.

CO6: Solve Large-scale real-world problems using GPUs and Multi-core systems.

TEXT BOOKS:

- 1. Ron Bekkerman, Mikhail Bilenko and John Langford, Scaling Up Machine Learning: Parallel and Distributed Approaches, Cambridge University Press, 2012.
- 2. Adi Polak, Scaling Machine Learning with Spark, O'Reilly Media, 2023.

- 1. J. Joshua Thomas, S. Harini, V. Pattabiraman, Scalable and Distributed Machine Learning and Deep Learning Patterns (Advances in Computational Intelligence and Robotics), IGI Global, 2023.
- 2. Bastiaan Sjardin, Luca Massaron, Alberto Boschetti, Large Scale Machine Learning with Python, Packt Publications, 2016.

	ENGINEERING COLLEGE	L	Т	P	С
22AM914	OPTIMIZATION METHODS IN MACHINE LEARNING	3	0	0	3
OBJECTIVES:					
• To unders	tand the basics of different Submodular functions and Associated Plov	yheo	dra.		
• To discus	s Submodularity and its Applications.				
• To analyz	e the various methods of Non-Smooth Convex Optimizations.				
• To analyz	e the various Separable Optimization Problems.				
	s the various Submodular minimization methods and optimizations.				
UNIT I	INTRODUCTION				9
Introduction – De	efinition – Submodularity – Associated Polyhedra – Polymatroids – Lo	ovas	z E	xten	sion -
	dy Algorithm – Links between submodularity and convexity.				
	sociated Polyhedra: Support functions – Facial Structure – Positive	e ar	nd S	ym	metric
submodular Poly				-	
UNIT II	SUBMODULARITY				9
Convex and Co	ncave closures of set functions - Structured Sparsity - Conve	ex I	Rela	xati	on of
Combinatorial Po	enalty – lq relaxations of submodular penalties – Shaping level sets	- I	Exai	nple	es and
Applications of S	Submodularity – Cardinality based functions – Cut functions – Set C	Cove	ers -	- Fl	ows –
<u> </u>	tral functions of submatrices – Best Subset Selection – Matroids.				
UNIT III	NON-SMOOTH CONVEX OPTIMIZATION				9
	dient descent – Ellipsoid Method – Kelly's Method – Analytic Centre				
	onditional gradient – Bundle and Simplicial Methods – Proximal Me				
	near Programming – Active Set Method for Quadratic Programmi	ing	- A	Activ	ve Se
0	east-squares Problems.				
	SEPARABLE OPTIMIZATION PROBLEMS				9
UNIT IV			ular	C	nctior
Analysis: Optim	ality conditions for base polyhedral – Equivalence with subm			TU	neuoi
Analysis: Optim Minimization – (ality conditions for base polyhedral – Equivalence with subm Quadratic Optimization Problems – Separable problems on other polyh	edra	a.		
Analysis: Optim Minimization – (Algorithms: Div	ality conditions for base polyhedral – Equivalence with subm Quadratic Optimization Problems – Separable problems on other polyh ide-and Conquer algorithm for proximal problems – Iterative alg	edra	a.		
Analysis: Optim Minimization – (Algorithms: Div minimization-Ap	ality conditions for base polyhedral – Equivalence with subra Quadratic Optimization Problems – Separable problems on other polyh ide-and Conquer algorithm for proximal problems – Iterative alg proximate minimization.	edra	a.		Exact
Analysis: Optim Minimization – (Algorithms: Div minimization-Ap UNIT V	ality conditions for base polyhedral – Equivalence with subm Quadratic Optimization Problems – Separable problems on other polyh ide-and Conquer algorithm for proximal problems – Iterative alg proximate minimization. SUBMODULAR MINIMIZATION AND OPTIMIZATION	edra gorit	a. hms	8 —	Exact 9
Analysis: Optim Minimization – (Algorithms: Div minimization-Ap UNIT V Minimizers of Su	ality conditions for base polyhedral – Equivalence with subra Quadratic Optimization Problems – Separable problems on other polyh ide-and Conquer algorithm for proximal problems – Iterative alg proximate minimization. SUBMODULAR MINIMIZATION AND OPTIMIZATION bmodular Functions – Combinatorial Algorithms – Minimizing Symm	edra gorit	a. hms c po	s – sim	Exact 9 odular
Minimization – Q Algorithms: Div minimization-Ap UNIT V Minimizers of Su functions – Ellips	ality conditions for base polyhedral – Equivalence with subm Quadratic Optimization Problems – Separable problems on other polyh ide-and Conquer algorithm for proximal problems – Iterative alg proximate minimization. SUBMODULAR MINIMIZATION AND OPTIMIZATION	edra gorit etric – A	a. hms c po naly	s – simo	Exact 9 odular centre

optimization – Special Structure. Maximization with cardinality constraints – Submodular function minimization.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

- **CO1**: Understand the basics of different Submodular functions and Associated Ployhedra.
- **CO2**: Discuss Submodularity and its Applications.
- **CO3**: Analyze the various methods of Non-Smooth Convex Optimizations.
- **CO4**: Analyze the various Separable Optimization Problems.
- **CO5**: Discuss the various Submodular minimization methods and optimizations.

CO6: Apply various optimization methods to solve real-world problem in machine learning.

TEXT BOOKS:

1. Francis Bach, "Learning with Submodular Functions: A Convex Optimization Perspective", Foundations and Trends in Machine Learning, Now Publishers Inc., 2013.

- 1. A. Beck, "First-Order Methods in Optimization", MOS-SIAM Series on Optimization, 2017.
- 2. S. Bubeck, "Convex Optimization: Algorithms and Complexity, Foundations and Trends in Optimization", 2015.
- 3. Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, Seventh Edition, 2009.
- 4. Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, Optimization for Machine Learning, The MIT Press, 2012.

OPEN ELECTIVE (Offered to Other Departments by AIML)										
22AM907		Г	P	С						
22AN1907	AI in BLOCK CHAIN 3 (0	0	3						
OBJECTIVES:										
• To acquire kr	nowledge in Blockchain Technologies.									
• To understand	d how block chain and AI can be used to innovate.									
• To elaborate	Cryptocurrencies and AI.									
 To develop a 	pplications using blockchain.									
• To understand	d the limitations and future scope of AI in Blockchain.									
UNIT I	INTRODUCTION TO BLOCKCHAIN		9	1						
Overview – Blockch	ain vs Distributed Ledger Technology vs Distributed Databases – P	ubli	ic v	s private						
vs permissioned bloc	kchains – Privacy in blockchains – Blockchain platforms - Hyperle	dge	r–							
Hashgraph, Corda –	IOTA - Consensus Algorithms – Building DApps with blockchain	too	ls.							
UNIT II	BLOCKCHAIN AND ARTIFICIAL INTELLIGENCE		9	1						
Introduction to the A	I landscape - AI and Blockchain driven Databases – Centralized vs	Dis	strib	outed						
data – Blockchain da	ta – Big data for AI analysis – Global databases – Data Managemen	nt ir	ı a I	DAO -						
Benefits of combinin	g blockchain and AI – Aicumen Technologies -Combining blockch	iain	and	l AI to						
humanize digital inte	practions.									
UNIT III	CRYPTOCURRENCY AND AI		9	1						
Bitcoins – Ethereum	- Role of AI in cryptocurrency – cryptocurrency trading – Making	pric	e							
predictions with AI -	- Market making – future of cryptocurrencies.									
UNIT IV	DEVELOPING BLOCKCHAIN PRODUCTS		9	1						
Development Life Cycle of a DIApp – Designing a DIApp – Developing a DIApp – Testing –										
Deploying – Monitor	ring – Implementing DIApps.									
UNIT V	LIMITATIONS AND FUTURE OF AI WITH BLOCKCHAI	N	9	1						

Technical Challenges – Business Model Challenges – Scandals and Public perception – Government Regulation – Privacy Challenges for Personal Records – Convergence of AI with Blockchain – Future – Enterprise.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Acquire knowledge in Blockchain Technologies.

CO2: Understand how block chain and AI can be used to innovate.

CO3: Elaborate Cryptocurrencies and AI.

CO4: Develop applications using blockchain.

CO5: Understand the limitations and future scope of AI in Blockchain.

CO6: Elaborate the various applications of AI in Blockchain.

TEXT BOOKS:

1. Ganesh Prasad Kumble, Anantha Krishnan, "Practical Artificial Intelligence and Blockchain: A guide to converging blockchain and AI to build smart applications for new economies", Packt Publications, 2020.

2. Melanie Swan, "Block Chain: Blueprint for a New Economy", O'Reilly, 2015.

REFERENCES:

- 1. Daniel Drescher, "Block Chain Basics", Apress; 1st edition, 2017.
- 2. Salman Baset, Luc Desrosiers, Nitin Gaur, Petr Novotny, Anthony O'Dowd, Venkatraman Ramakrishna, "Hands-On Block Chain with Hyperledger: Building Decentralized Applications with Hyperledger Fabric and Composer", Import, 2018.

22 A N/021	SOFT COMPUTINC	L	Т	Р	C
22AM921	SOFT COMPUTING	3	0	0	3
OBJECTI	VES:				
The Course will	l enable learners to:				
• To learn	the basic concepts of Soft Computing.				
To under	stand artificial neural networks.				
 To apply 	fuzzy systems to solve problems.				
• To solve	problems using Genetic Algorithms.				
• To discus	ss the various Hybrid algorithms and various Swarm Intelligence alg	gorith	ms.		
UNIT I	INTRODUCTION				9
Neural Networks	s - Application Scope of Neural Networks - Fuzzy Logic - Genetic	Algo	orith	m - I	Hybrid
	omputing - Artificial Neural Network - Evolution of Neural Network				
-	s – Bias – Threshold – Learning Rate – Momentum Factor – V	igila	nce	Para	meter-
	Neuron - Linear Separability - Hebb Network.				•
UNIT II	ARTIFICIAL NEURAL NETWORKS				9
-	orks - Adaptive Linear Neuron - Multiple Adaptive Linear Neurons			-	0
	Basis Function Network - Pattern Association – Auto associative an				
•	rks - Bidirectional Associative Memory (BAM) - Hopfield Netwo	orks -	· Fix	ced V	Neight
	s - Kohonen Self-Organizing Feature Maps.				I
UNIT III	FUZZY SYSTEMS				9
• •	lassical Sets (Crisp Sets) - Fuzzy Sets – Fuzzy Relation - Features				-
	ification - Methods of Membership Value Assignments - Defuzzifica				
	(Alpha-Cuts) - Lambda-Cuts for Fuzzy Relations - Defuzzificatio	n Me	etho	ds –	Fuzzy
	zy Inference Systems.				<u> </u>
UNIT IV	GENETIC ALGORITHMS				9

Biological Background - Traditional Optimization and Search Techniques- Genetic Algorithm and Search Space- - Simple GA - General Genetic Algorithm - Operators - Stopping Condition - Constraints -

UNIT V	HYBRID SOFT COMPUTING AND SWARM INTELLIGENCE ALGORITHMS			9
Genetic Hybrid	ybrid Systems - Genetic Neuro-Hybrid Systems - Genetic Fuzzy Hy Systems - Simplified Fuzzy ARTMAP – Swarm Intelligence Algorithn Artificial Bee Colony – Particle Swarm Optimization – Firefly Algorithn	ns - A		
1	TOTAL		PER	RIOD
OUTCOM				
	tion of the course, the students will be able to:			
	e the basic concepts of Soft Computing.			
	Artificial neural networks and its applications. uzzy logic to solve different applications.			
	problems using Genetic algorithms.			
	various algorithms in Soft computing with its applications and limitation	tions	_	
	ous algorithms in Soft computing to solve real-world problems.		•	
FEXT BOOKS				
1. S. N. Siv	anandam, S. N. Deepa, "Principles of Soft Computing", Wiley India Pv	t. Ltd	l., 2n	ıd
Edition,				
	ovik, "Swarm Intelligence Algorithms: Modification and Applications",	Tayl	or &	
	First Edition, 2020.			
REFERE		<u> </u>	-	
-	g Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and S	off C	Com	puting
	Hall of India, 2002. H. Lee, First course on Fuzzy Theory and Applications, Springer, 2005.			
3 NP Pad		d Un	iver	sitv
	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor	rd Un	iver	sity
Press, 20	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015.		iver	sity
Press, 20 4. S. Rajase	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor		iver	sity
Press, 20 4. S. Rajase Algorithe 5. NPTEL	 Ihy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfore 115. Bekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Gem, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: 	netic		
Press, 20 4. S. Rajase Algorithe 5. NPTEL	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017.	netic		
Press, 20 4. S. Rajase Algorithe 5. NPTEL	 Ihy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfore 115. Bekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Gem, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: 	netic		
Press, 20 4. S. Rajase Algorith 5. NPTEL a. In	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_	netic _cs40		
Press, 20 4. S. Rajase Algorith 5. NPTEL a. In 22AM925	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23 COMPUTATIONAL NEUROSCIENCE	netic _cs40 4 T)/pre	view
Press, 20 4. S. Rajase Algorith 5. NPTEL (a. In 22AM925 OBJECTIVES	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_ COMPUTATIONAL NEUROSCIENCE	netic _cs40 4 T	/pre	view C
Press, 20 4. S. Rajase Algorith 5. NPTEL a. In 22AM925 OBJECTIVES • To unde	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_ COMPUTATIONAL NEUROSCIENCE	netic _cs40 4 T 5 0	/pre P 0	view C 3
Press, 20 4. S. Rajase Algorithm 5. NPTEL (a. In 22AM925 OBJECTIVES • To under • To expl	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 15. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_ COMPUTATIONAL NEUROSCIENCE	netic _cs40 4 T 5 0	/pre P 0	view C 3
Press, 20 4. S. Rajase Algorithe 5. NPTEL (a. In 22AM925 OBJECTIVES • To unde • To expl control,	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_ COMPUTATIONAL NEUROSCIENCE	netic _cs40 4 T 5 0	/pre P 0	view C 3
Press, 20 4. S. Rajase Algorithm 5. NPTEL (a. In 22AM925 OBJECTIVES • To under • To expl control, • To analy	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 115. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_ COMPUTATIONAL NEUROSCIENCE [] S: erstand what nervous systems do and determine how they function. lore the computational principles governing various aspects of vision, learning, and memory. yze neural models.	netic _cs40 4 T 5 0	/pre P 0	view C 3
Press, 20 4. S. Rajase Algorithm 5. NPTEL 0 a. In 22AM925 OBJECTIVES • To unde • To expl control, • To analy • To learn	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 15. ekaran, G. A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_ COMPUTATIONAL NEUROSCIENCE S: erstand what nervous systems do and determine how they function. lore the computational principles governing various aspects of vision, learning, and memory. yze neural models. n to extract information through neural encoding and decoding.	netic _cs40 4 T 5 0	/pre P 0	view C 3
Press, 20 4. S. Rajase Algorithe 5. NPTEL 0 a. In 22AM925 OBJECTIVES • To unde • To expl control, • To expl control, • To learn • To invest	hy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23 Image: Computational principles governing various aspects of vision, learning, and memory. yze neural models. n to extract information through neural encoding and decoding. stigate models of synaptic plasticity and learning in the brain.	netic _cs40 4 T 5 0	/pre P 0	view C 3
Press, 20 4. S. Rajase Algorithm 5. NPTEL 0 a. In 22AM925 OBJECTIVES • To unde • To expl control, • To analy • To learn • To invest UNIT I	Interpretation Sector Interpretation Interpretation Intex Interpretation <th>netic _cs40 _ T _ 0 sens</th> <td>P 0 ory-</td> <td>view C 3 motor</td>	netic _cs40 _ T _ 0 sens	P 0 ory-	view C 3 motor
Press, 20 4. S. Rajase Algorithe 5. NPTEL 0 a. In 22AM925 OBJECTIVES • To unde • To expl control, • To learr • To learr • To inves UNIT I Firing Rates ar	Ihy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxfor 015. ekaran, G. A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Ge m, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017. Courses: ntroduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_ Image: Computing - https://onlinecourses.nptel.ac.in/noc23_ Image: Computational principles governing various aspects of vision, learning, and memory. yze neural models. n to extract information through neural encoding and decoding. stigate models of synaptic plasticity and learning in the brain. NEURAL ENCODING ad Spike Statistics: Introduction- Spike Trains and Firing Rates - What Neuroper Spike	netic _cs40 _ T _ 0 sens	P 0 ory-	view C 3 motor
Press, 20 4. S. Rajase Algorithm 5. NPTEL 0 a. In 22AM925 OBJECTIVES • To under • To expl control, • To expl control, • To analy • To learr • To inves UNIT I Firing Rates an Fire? Spike-Tra	Interpretation Sector Interpretation Interpretation Intex Interpretation <th>netic _cs40 2 T 0 sens</th> <td>P 0 ory-</td> <td>view C 3 motor 9 feuron</td>	netic _cs40 2 T 0 sens	P 0 ory-	view C 3 motor 9 feuron

Receptive Fields in the Retina and LGN Constructing Visual Receptive FieldsUNIT IINEURAL DECODING AND INFORMATION THEORY

Discrimination - Population Decoding - Spike-Train Decoding Information Theory: Entropy and Mutual Information – Information and Entropy Maximization –

9

	formation for Spike Trains		
UNIT III	MODEL NEURONS		9
	nalysis – I - Phase Plane Analysis – II - Analyzing HHE – Bifurcation		
	els of Neuron Modeling-Conductance-Based Models - The Cable E	Equatio	n- Multi
compartment r			
UNIT IV	NETWORK MODELS		9
-	odels – Feedforward Networks – Recurrent Networks – Excitatory-Inhibit	tory N	etworks
Stochastic Net			
UNIT V	PLASTICITY		9
• 1	mission and Synaptic Strength - Ways of Modification of Synaptic Strength	0	Types of
Plasticity - Sho	ort Term Plasticity - Long Term Plasticity – Computational Implications		
	ΤΟΤΑΙ	.: 45 P	PERIOD
OUTCOMES			
At the end of	this course, the students will be able to:		
CO1: Elab	orate the fundamentals of neural encoding.		
CO2: App	y neural encoding techniques.		
CO3: Use	Information Theory to decode neural signals.		
CO4: Anal	yze and model the dynamics of neurons.		
CO5: Desi	gn and analyze neural networks.		
CO6: Impl	ement the concepts of synaptic plasticity.		
ГЕХТ ВООК	S:		
1. Dayan,	Peter, and L. F. Abbott, Theoretical Neuroscience: Computational and I	Mather	natical
	ng of Neural Systems. Cambridge, MA: MIT Press, 2005. ISBN: 97802		
2. Paul M	iller, An Introductory Course in Computational Neuroscience, MIT Pres	s, 201	8.
REFERENC	ES:		
1. Signal	and Systems, Alan V. Oppenheim, Alan S. Willsky, Syed Hamid Nawał	Prent	ice Hall,
1997.			
2. Method	ls in Neuronal Modeling, Second Edition From Ions to Networks, Edite	d by C	hristof
Koch a	nd Idan Segev, MIT Press		
3. Ionic C	hannels of Excitable Membranes, Second Edition, Bertil Hille, Sinauer	Associ	ates
Inc.,19			
4. NPTEI	: Computational Neuroscience - Course (nptel.ac.in)		
			<u></u>
22AM919	RIOLINFORMATICS		P C
		3 0	0 3
OBJECT			
	IVES: Il enable learners to: and and develop models for Biological Data.		
	ent image processing Techniques to Bioinformatics Data		
	ent Micro Array analysis over Genome Expression.		
	and the study of simbiology.		
• Underst	and the pharmacokinetic modeling.		
• Underst	and the working model of biological data in Matlab.		
UNIT I	INTRODUCTION		9
Overview of Bi	oinformatics Technologies – Structural Bioinformatics – Data Format a	nd Proo	cessing -
	ources and Applications – Role of Structural Bioinformatics – Biologica		U U
-			
ntegration Syst			

UNIT II	BIOINFORMATICS TOOL BOX	9
Sequence Anal	ysis – NGS – Graph Theory – Gene Ontology – Importing Data and Deploying.	
UNIT III	BIOLOGICAL DATA ANALYSIS	9

UNIT IV IN	AAGE PROCESSING	9
	nage Processing – Importing and Exporting Images – Image File	
	and Post Processing Images – Spatial Transformations and In	
Microarray Image		hage Registration
	YSTEMS BIOLOGY	9
	Kinetics – Kinetic Laws – Modeling Biological System: Simulati	
	er Estimation using Simbiology – Pharmacokinetic Modeling: Sim	
	he Yeast Heterotrimeric G Protein Cycle and Glycoly.	anadon, i opanadon
2000 1120001 01 0		TAL: 45 PERIOD
OUTCOME		
Upon completio	n of the course, the students will be able to:	
	lop models for Biological Data.	
CO2: Imple	ement image processing Techniques to Bioinformatics Data	
CO3: Imple	ement Micro Array analysis over Genome Expression.	
CO4: Unde	erstand the study of simbiology.	
CO5: Illust	rate the pharmacokinetic modeling.	
CO6: Elabo	brate the working model of biological data in Matlab.	
TEXT BOOKS:		
	noebe Chen(Ed),"Bioinformatics Technologies", Springer Publicat	
	itz, M. F. Ramoni, "Systems Bioinformatics: An Engineering Cas	e-Based
	Artech House, 2017.	
REFERENC		
	. King, Nipa A. Mody, "Numerical and Statistical Methods for Bio	pengineering:
	ns in MATLAB", Cambridge University Press, 2011.	
	nmlow, "Bio signal and Medical Image Processing", CRC Press, 2	
	oppensteadt, Charles S. Peskin, "Modeling and Simulation in Med	licine and Life
	Springer, 2010.	
4. C. Gibas, P	er Jambeck, "Developing bio- informatics computer skills", O'Re	illy Media, 2001
		L T P C
22AM001	INTRODUCTION TO GENERATIVE AI	

- To understand the basic concepts of Generative AI.
- To build Generative AI systems to generate images.
- To understand the concept used in Generative AI Models.
- To use various Generative AI models.
- To compare and use the various Large Language Models. •
- To understand the basics of Prompt Engineering. •

UNIT I **INTRODUCTION**

Generative Models – Image transformation – Challenges - Deep Neural Networks – Perceptron – back propagation - CNN - RNN - Optimizer. 9

9

UNIT II **IMAGE GENERATION**

Creating encodings of images - variational objective - Inverse Autoregressive flow - Importing CIFAR -Creating the network from TensorFlow 2. 9

UNIT III GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks - Vanilla GAN - Improved GANs - Progressive GAN - Challenges -Paired style transfer – Unpaired style transfer – Deepfakes – Modes of operation – key feature set – High level flow - Replacement - Re-enactment.

UNIT IV	LARGE LANGUAGE MODELS	9
Overview of LL	Ms - Transformers – GPT – Types of LLMs – Key concepts – othe	er Transformers – T5 -
	Fraining Models – Multi-modal Models – DALLE 2	
UNIT V	PROMPT ENGINEERING	9
Basics – In-Co	ntext Learning - In-Context Prompting - Techniques - Image	Prompting – Promp
Hijacking – Cha	llenges.	
	Τ	OTAL: 45 PERIODS
OUTCOMES:		
	is course, the students will be able to:	
	rate the basic concepts of Generative AI.	
	Generative AI systems to generate images.	
	the concepts used in Generative AI Models.	
	arious Generative AI models.	
-	are and use the various Large Language Models.	
•	ze the basics of Prompt Engineering.	
TEXT BOOKS	-	
	farth, Generative AI with Lang Chain, Packt Publishing, 2023.	
	nree, Generative AI in Action, Manning Publication, First Edition,	2023.
REFERENCES		_
	oster, Generative Deep Learning, 2nd Edition, O'Reilly Media, 202	
	hamani and Maggie Engler, Introduction to Generative AI, Man	ning Publication, Firs
Edition,		1 5 1 11
	a Alto, Modern Generative AI with ChatGPT and OpenAI Mode	ls, Packt publications
2024.		
	FOUNDATIONS OF NATURAL LANGUAGE PROCESSI	L T P C

OBJECTIVES:

- To learn the fundamentals of natural language processing
- To discuss word level analysis.
- To discuss the different language models.
- To understand the significance of syntactic and semantic analysis.
- To learn discourse algorithms and various lexical resources.

UNIT I INTRODUCTION

Natural Language Processing - Ambiguities in NLP - Regular Expressions - Words - Corpora - Text Normalization, Minimum Edit Distance.

9

9

UNIT II WORD LEVEL ANALYSIS

Morphological Analysis - Morphological Parsing - Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff - Word Classes, Part-of-Speech Tagging, Rule-based - HMM -Transformation-based tagging. 9

UNIT III LANGUAGE MODELS

Markov Chains – Hidden Markov Model – Forward Algorithm – Decoding: Viterbi Algorithm – Training HMMs – Maximum Entropy Models – Maximum Entropy Markov Models. 10

UNIT IV SYNTACTIC AND SEMANTIC ANALYSIS

Context-Free Grammars - Grammar rules - Treebanks - Normal Forms for grammar - Finite-state - CFG - Dependency Grammar - Parsing with CFG - Search - Ambiguity - Syntax-Driven Semantic analysis -Semantic Augmentations - Semantic attachments – Unification based approaches to Semantic Analysis – Semantic Attachments – Integrating Semantic Analysis to Early Parser – WordNet. 8

UNIT V **APPLICATIONS OF NLP**

Information Extraction - Question Answering and Summarization – Dialogue and Conversational Agent

- Machine Translation.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Elaborate the fundamentals of natural language processing.

CO2: Perform word level analysis in NLP.

CO3: Illustrate different ML models for NLP.

CO4: Analyze the syntax and semantics using various methods.

CO5: Analyze text at the word level.

CO6: Apply NLP to solve real-world problems.

TEXT BOOKS:

1. Daniel Jurafsky, James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech", Pearson Publication, Second Edition, 2019.

- 1. Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", First Edition, O'Reilly Media, 2009.
- 2. Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.
- 3. Richard M Reese, "Natural Language Processing with Java", O'Reilly Media, 2015.
- 4. Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman and Hall/CRC Press, 2010.
- 5. Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

22434002		L	Τ	P	С
22AM003	COGNITIVE SCIENCE AND ANALYTICS	3	0	0	3
OBJECTIV	/ES:				
 Το ι 	Inderstand cognitive computing.				
• To k	know about design principles and NLP for Cognitive systems.				
• To c	listinguish between Big Data and Cognitive computing.				
• To a	liscuss implications of cognitive computing in business.				
• To a	levelop applications of cognitive computing.				
UNIT I	FOUNDATIONS OF COGNITIVE SCIENCE				9
systems- sy	of Cognitive Computing: cognitive computing as a new generation- the stem cognitive- gaining insights from data- Artificial Intelligence as mputing- understanding cognition.				
UNIT II	DESIGN PRINCIPLES FOR COGNITIVE SYSTEMS AND NLP	IN			9
	COGNITIVE SYSTEMS				
Components	s of a cognitive system- building the corpus- bringing data into a	cogn	itive	e sy	stem-
machine lear	rning- hypotheses generation and scoring- presentation and visualizati	on s	ervi	ces.	
Natural Lan	guage Processing in support of a Cognitive System: Role of NLP in a	cogr	itiv	e sy	stem-
semantic we	b- Applying Natural language technologies to Business problems.				
UNIT III	BIG DATA Vs COGNITIVE COMPUTING				9
defining big	between Big Data and Cognitive Computing: Dealing with human data- architectural foundation- analytical data warehouses- Hadoop ng data- integration of big data with traditional data.				
UNIT IV	THE BUSINESS IMPLICATIONS OF COGNITIVE COMPUTIN	١G			9
difference w	or change- advantages of new disruptive models- knowledge mean with a cognitive systems approach- meshing data together differently to plan for the future- answering business questions in new ways-	- u	sing	bu	siness

specific solutions- making cognitive computing a reality- cognitive application changing the market-IBM Watson as a cognitive system.

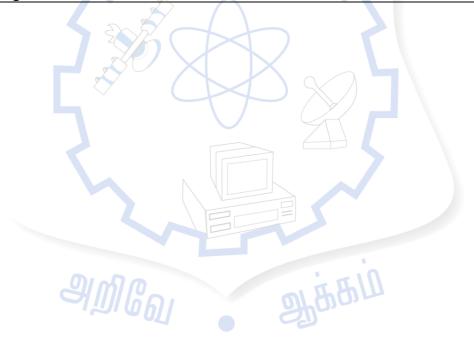
UNIT V APPLICATIONS OF COGNITIVE COMPUTING

Build a cognitive health care application - Build a cognitive application on Smarter cities - Applicate Cognitive Computing principle in building a Government related application.

TOTAL: 45 PERIODS

9

OUTCOMES:


At the end of this course, the students will be able to:

- **CO1:** Elaborate the concepts of cognitive science and computing.
- **CO2:** Design and Implementation of Cognitive Systems.
- CO3: Apply NLP in cognitive systems.
- **CO4:** Integrate Big Data and Cognitive computing.
- **CO5:** Discuss implications of cognitive computing in business.
- **CO6:** Develop various applications of cognitive computing.

TEXT BOOKS:

1. Judith H Hurwitz, Marcia Kaufman, Adrian Bowles, "Cognitive computing and Big Data Analytics", Wiley, 2015.

- 1. Vijay Raghvan, Venu Govindaraju, C.R. Rao, "Cognitive Computing: Theory and Applications", Elsevier publications, North Holland Publication, 1st Edition, 2016.
- 2. Mallick, Pradeep Kumar, Borah, Samarjeet, "Emerging Trends and Applications in Cognitive Computing", IGI Global Publishers, 2019.

R2022

HONOURS DEGREE OFFERED BY DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

(For the Students admitted during 2022-2023 & 2023-2024)

R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING WITH SPECIALIZATION IN SI. No NAME OF THE HONOURS DEGREE WITH SPECIALIZATION 1. Computational Intelligence

 2.
 Intelligent Healthcare

R2022 CURRICULUM OF B.TECH. (HONOURS) IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Additional 18 credits to be completed from the courses offered in any Professional Elective Vertical

HONOURS VERTICALS:

	INTELLIGENT HEALTHCARE							
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	22AM915	AI and ML for Healthcare	PEC	4	2	0	2	3
2.	22AM916	Medical Image Analysis	PEC	3	3	0	0	3
3.	22AM917	Clinical Data Science	PEC	3	3	0	0	3
4.	22AM918	Deep Learning in Genomics and Life Sciences	PEC	3	3	0	0	3
5.	22AM919	Bio-Informatics	PEC	3	3	0	0	3
6.	22AM920	Smart and Interactive Healthcare Technologies	PEC	3	3	0	0	3
7.	22AM812	Capstone Project	PEC	12	0	0	12	6

	COMPUTATIONAL INTELLIGENCE							
Sl. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	22AM921	Soft Computing	PEC	3	3	0	0	3
2.	22AM922	Applied AI and ML	PEC	3	3	0	0	3
3.	22AM923	Recommender Systems	PEC	3	3	0	0	3
4.	22AM924	Knowledge Engineering	PEC	3	3	0	0	3
5.	22AM925	Computational Neuroscience	PEC	3	3	0	0	3
6.	22AM926	AI Essentials	PEC	3	3	0	0	3
7.	22AM812	Capstone Project	PEC	12	0	0	12	6

HONOURS VERTICAL – INTELLIGENT HEALTHCARE

		T P C
22AM915	ALAND ML FOR HEALTHCARE	1 1 0 0 2 3
OBJECTIVES :		
• To gain a	a deep insight into the key concepts of AI and Big data for healthcare.	
•	iarize the principles of drug discovery and molecular modeling.	
	the various techniques of machine intelligence for Cancer prediction.	
	re the recent trends in medical imaging.	
-	stand the Remote patient monitoring and AI assisted surgery techniques.	
UNIT I	CURRENT HEALTHCARE, BIG DATA, AND MACHINE	6+6
	LEARNING	010
Current healthca	re practice- Value-based treatments and healthcare services- Increasing data	volumes
	Analytics of healthcare data – The new age of healthcare- Precision medicine- A	
	medical visualization- Intelligent personal health records-	
	rtificial intelligence-powered devices- Ambient assisted living- Success fac	ctors for
	ence in healthcare	
List of Lab Exe		
	Diagnostic Analytics for a medical data set	
	Prescriptive Analytics for a medical data set	
UNIT II	DRUG DISCOVERY AND MOLECULAR MODELING	6+6
Introduction - T	ne scope of artificial intelligence in drug discovery- Types of machine learning	in
	ence- Molecular modeling and databases in AI for drug molecules- ML method	
	ling- Drug characterization- Drug design for neuroreceptors using ANN technic	
	ning in drug design	1
List of Lab Exe		
1. Perform dru	g discovery Analytics using pharmaceutical data set	
	ecular Modeling Analytics using Molecular Modeling DataBase	
UNIT III	CANCER DIAGNOSTICS AND TREATMENT DECISIONS	6+6
Background- AI	, ML, and deep learning in cancer- Determine cancer susceptibility- Enhanced	d cancer
diagnosis and s	taging- Predict cancer treatment response- Predict cancer recurrence and s	survival-
Personalized car	ncer pharmacotherapy	
List of Lab Exe	rcises:	
1. Perform Can	cer Detection Analytics using a medical data set.	
2. Perform Canc	er Treatment Decision Analytics using a medical data set.	
UNIT IV	ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGING	6+6
Introduction – A	I in radiology/medical imaging – overcoming the hurdles - X-rays and AI in	medical
imaging - Ultra	sound and AI in medical imaging- Application of AI in medical imaging	g - The
development of .	AI in medical devices - Limitations of AI in medical devices - The future frontie	ers of AI
in medical devic	es	
List of Lab Exe	rcises:	
1. Perform	Xray Image Analysis using a medical data set.	
2. Perform U	Jltrasound Analysis using a medical data set.	
UNIT V	REMOTE PATIENT MONITORING USING AI	6+6
	eploying patient monitoring - The role of AI in remote patient monitoring -	
	ion and monitoring using AI - Cardiac monitoring using AI - Neural	
applications and	remote patient monitoring - Artificial intelligence assisted surgery- Preoperativ	ve
- Intraoperative		
List of Lab Exe	rcises:	

List of Lab Exercises:

1. Develop a IOT based Remote Patient Monitoring system Project

TOTAL: 30+30=60 PERIODS

OUTCOMES:

At the end of this course, the students will be able to:

- CO1: Elaborate the key concepts of AI and Big data for healthcare.
- **CO2**: Illustrate the principles of drug discovery and molecular modeling.
- CO3: Implement various techniques of machine intelligence for Healthcare applications.
- CO4: Identify the recent trends in medical imaging.
- **CO5**: Understand the Remote patient monitoring system.
- CO6: Apply various algorithms of AI and ML to solve Healthcare problems.

TEXT BOOKS:

1. Adam Bohr, Kaveh Memarzadeh, Artificial Intelligence in Healthcare, Academic Press is an imprint of Elsevier, 2020.

REFERENCES:

- 1. Arjun Panesar ,Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes, APress, 2019.
- 2. Rangaraj M. Rangayyan, Biomedical Image Analysis, 2004.
- 3. Ranjay Krishna, "Computer Vision: Foundations and Applications", Standford University, 2017.
- 4. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer 2011.
- 5. S.N. Sivanandam, S.N. Deepa, Principles of Soft Computing, 3rd Edition, Wiley, 2018.

LIST OF EQUIPMENTS:

Systems with Anaconda, Jupyter Notebook, Python

22AM916	MEDICAL IMAGE ANALYSIS	L	Τ	P	С
22AW1910	MEDICAL IMAGE ANAL 1515	3	0	0	3
OBJECT	IVES:				
The Cour	se will enable learners to:				
• 0	nderstand of various medical imaging modalities.				
• E	xplore advanced deep learning techniques for medical image analysis				
	evelop solutions by preprocessing medical images, implementing m		e le	arnir	ng and
	eep learning algorithms.				U
	xamine the ethical implications and societal impact of deploying mac	hine l	earn	ing r	nodels
	healthcare.			0	
• E	laborate on recent advances and research trends in machine intelligen	ce for	me	lical	image
	nalysis.				8-
UNIT I	INTRODUCTION TO MEDICAL IMAGING				9
Overview of n	nedical imaging modalities -MRI, CT, X-ray, Ultrasound-Basics o	f ima	ge a	acqui	sition,
	visualization in medical imaging-Challenges and importance of med		<u> </u>	-	
	common medical imaging datasets.		Ľ		5
UNIT II	FUNDAMENTALS OF MACHINE LEARNING				9
Introduction to	machine learning concepts-Supervised, unsupervised, and semi-s	superv	vise	i lea	rning-
Feature extracti	on and feature selection techniques-Evaluation metrics for machine le	earnin	g m	odels	5.
Feature extracti	on and feature selection techniques-Evaluation metrics for machine le DEEP LEARNING FUNDAMENTALS	earnin	g m	odels	s. 9
UNIT III	DEEP LEARNING FUNDAMENTALS		~		9
UNIT III Basics of artific	1) for i	mag	e ana	9 alysis-
UNIT III Basics of artific	DEEP LEARNING FUNDAMENTALS ial neural networks (ANNs)-Convolutional Neural Networks (CNNs)) for i	mag	e ana	9 alysis-

0		•
-	techniques-thresholding, region growing-Registration and alignment of medical	1mages-
	tion for medical image datasets	
UNIT V	MEDICAL IMAGE ANALYSIS	9
	of medical images using machine learning algorithms-Object detection and localiz	ation in
	s-Case studies and applications of machine learning in medical image analysis.	
	eep learning architectures for medical image analysis-Semantic segmentation for	
images-Genera	tive models for medical image synthesis-Ethical considerations and challenges in de	ploying
deep learning 1	nodels in healthcare.	
	TOTAL: 45 PE	RIODS
OUTCO	MES:	
	etion of the course, the students will be able to:	
	strate a comprehensive understanding of various medical imaging modalities.	
CO2: Apply r	nachine learning and deep learning techniques.	
CO3: Develop	p solutions by preprocessing medical images, implementing machine learning and o	leep
learning	algorithms.	
CO4: Underst	and the ethical considerations and regulatory requirements associated with deployi	ng
machin	e intelligence models in healthcare settings.	
CO5: Elabora	te on recent advances and research trends in machine intelligence for medical imag	e
analysis.		
CO6: Illustrate	e the applications of ML and DL in medical image analysis.	
TEXT BOOK	S:	
1. Le Lu,	Yefeng Zheng, Gustavo Carneiro, Lin Yang, Deep Learning and Convolutional N	eural
Networ	ks for Medical Image Computing Precision Medicine, High Performance and Larg	e-Scale
Dataset	, Springer, 2017.	
2. Atam	P. Dhawan, "Medical Image Analysis", Wiley Publications, 2010.	
REFERENCE		
1. Ton J.	Cleophas and Aeilko H. Zwinderman, Machine Learning in Medicine - A Comple	te
	ew", Springer, 2015.	

2. Nadine Barrie Smith and Andrew Webb, "Introduction to Medical Imaging: Physics, Engineering and Clinical Applications", Cambridge University Press, 2010.

CLINICAL DATA SCIENCE

 T
 P
 C

 0
 0
 3

L

3

OBJECTIVES:

- Discuss standards to generate clinical data from electronic medical records.
- Elaborate various Modelling methods on Clinical Data.
- Illustrate methods to perform clinical data analysis using various data analysis techniques.
- Interpret clinical data analysis to support decision making.
- Apply statistics to improve the quality of decision making.
- Develop applications using Clinical Data.

UNIT I	INTRODUCTION	9				
Data Sources - Electronic Medical Records - Laboratory Information Management Systems - GDPR -						
Data Types – Dat	a Standards – Big Clinical Data – Data Landscape – Standardizing Clinical Data.					
UNIT II	CLINICAL DATA TO MODELS	9				
Preparing Data fo	Preparing Data for Predictive Modelling – Designs for Model Development – Sample size – Missing Data					
– Time-Domain H	Processing – Frequency-Domain Processing – Prediction Modelling Methodology	.				
UNIT III	CLINICAL DATA ANALYSIS	9				

Clinical Trials – Classifications – Discrete Data Analysis – Failure-time Data Analysis – Quantitative Data Analysis – Multiplicity Analysis.

UNIT IV MEDICAL STATISTICS

Prove Prior Hypothesis – Improve the quality of research – Testing Randomness – Quality criteria. UNIT V APPLICATIONS 9

Clinical Decision Support System – Types – Challenges - Best Knowledge & Continuous Improvement of Knowledge and CDSS Methods – Mobile CDSS – Care Process – Operational Excellence – Process Mining - Sociotechnical Systems & Leadership - Value-Based Health Care Supported by Data Science.

TOTAL: 45 PERIODS

9

OUTCOMES:

At the end of this course, the students will be able to:

- CO1: Generate clinical data from electronic medical records.
- **CO2**: Employ various Modelling methods on Clinical Data.
- CO3: Perform clinical data analysis using various data analysis techniques.
- CO4: Interpret clinical data to support decision making.
- CO5: Apply statistics to improve the quality of decision making.

CO6: Develop applications using Clinical Data.

TEXT BOOKS:

- 1. Pieter Kubben, Michel Dumontier, Andre Dekker, Fundamentals of Clinical Data Science, Springer, 2019.
- 2. Ton J. Cleophas, Aeilko H. Zwinderman, Understanding Clinical Data Analysis: Learning Statistical Principles from Published Clinical Research, Springer, 2016.

REFERENCES:

1. Aeilko H. Zwinderman, Ton J. Cleophas, Machine Learning in Medicine - A Complete Overview, Springer, 2021.

22AM918	DEEP LEARNING IN GENOMICS AND LIFE SCIENCES	L 3	Т 0	P 0	C 3
OBJECTIVES:	50HI (0H)	5	U	U	5
	molecules and proteins as features for building machine learni	no m	node	als	
	how to extract interpretable, biological insights from deep lea				ls
_	ne applications of deep learning in genomics.		5	oue	
	fferent models for Genomic applications.				
•	rious deep learning tools for genomics.				
1.	Ns for improving the models.				
UNIT I	MACHINE LEARNING IN GENOMICS			9	
Machine Learnin	g for Genomics - Biopython – Genomics Data Analysis	- C	Jeno	ome	– Genome
sequencing - Sang	ger sequencing of nucleic acids – Evolution of next generation	sequ	enc	ing -	– Analysis –
steps - Calculatin	g GC content – nucleotide content- Dinucleotide content – Mo	delli	ing	– M	otif finder.
Case Study: Sequ	ence Analysis of Covid-19				
UNIT II	BIOPHYSICAL MACHINE LEARNING			9)
Molecule - Molec	cular Bonds - Molecular Graphs - Molecular Conformations -	Chir	ality	y of	Molecules -
Featurizing a Mol	ecule - Graph Convolutions - Protein Structures - Protein Security	eque	nce	s -	Biophysical
Featurizations - C	rid Featurization - Atomic Featurization.				
~ ~	yzing the PDBBind Dataset.				
Case Study: Anal	yzing the i DDDind Dataset.				

	nomics – workflow for Genomics – Protein structure predictions – Regury Networks – Single-cell RNA sequencing – Deep learning libraries for	
-	Disease prediction	genomes.
UNIT IV	CNN AND RNN FOR GENOMICS	9
Transfer Lear	ning – CNNs for Genomics – Applications – Deep Bind – DeepInsight	– DeepChrome –
	- Applications and use cases of RNNs in Genomics – DeepNano – Pro	-
-	for genomics – Gene Expression.	
	Predicting Gene expression from TCGA pan-cancer RNA-S using denois	sing autoencoders.
UNIT V	MODEL IMPROVEMENT	9
GANs for Imp	proving Models – Difference between Discriminative and Generative Mo	odels – Challenges
	ta – Applications – Analysis of ScRNA-Seq data – Generation of DNA.	0
Case Study: 1	Personalized Medicine	
	TOTA	AL: 45 PERIODS
OUTCOMES	:	
At the end of	this course, the students will be able to:	
CO1: Represe	nt molecules and proteins as features for building machine learning mod	lels.
CO2: Extract	interpretable, biological insights from deep learning models.	
	e the applications of deep learning in genomics.	
•	e different models for Genomic applications.	
	various deep learning tools for genomics.	
	GANs for improving the models.	
TEXT BOOI		
	ra Kumar Devisetty, Deep Learning for Genomics: Data-driven approac ations in life sciences and biotechnology, packt Publications, 2022.	hes for genomics
	h Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Deep Learn	ing for the Life
	es: Applying Deep Learning to Genomics, Microscopy, Drug Discovery	-
	ly, 2019.	,
REFERENC		
1 Saniik	an Sekhar Roy Y-H Taguchi Handbook of Machine Learning	Applications for

- 1. Sanjiban Sekhar Roy, Y.-H. Taguchi, Handbook of Machine Learning Applications for Genomics, Springer, 2022.Shailza Singh, Machine Learning and Systems Biology in Genomics and Health, Springer, 2022.

22AM919	BIO-INFORMATICS	P	С
22AN1919	BIO-INFORMATICS 3 0	0	3
OBJECT	TVES:		
The Course w	ill enable learners to:		
• Underst	tand and develop models for Biological Data.		
 Implem 	ent image processing Techniques to Bioinformatics Data		
Implem	ent Micro Array analysis over Genome Expression.		
• Underst	tand the study of simbiology.		
• Underst	tand the pharmacokinetic modeling.		
• Underst	tand the working model of biological data in Matlab.		
UNIT I	INTRODUCTION		9
Overview of B	ioinformatics Technologies – Structural Bioinformatics – Data Format and Pro	cessi	ng –
Secondary Res	ources and Applications – Role of Structural Bioinformatics – Biological Data		
Integration Sys	tem		
UNIT II	BIOINFORMATICS TOOL BOX		9

Sequence Ana	alysis – NGS – Graph Theory – Gene Ontology – Importing Data and Deploying.	
UNIT III	BIOLOGICAL DATA ANALYSIS	9
Microarray D	ata Analysis – Mass Spectrometry Data Analysis – Statistical Classification of Biol	ogical
Data.		C
UNIT IV	IMAGE PROCESSING	9
Key Features	of Image Processing - Importing and Exporting Images - Image File Formats and	Format
Conversion -	Pre and Post Processing Images - Spatial Transformations and Image Registr	ation –
Microarray In	nage Analysis.	
UNIT V	SYSTEMS BIOLOGY	9
Analysis, Para	zyme Kinetics – Kinetic Laws – Modeling Biological System: Simulation, Sensitivi ameter Estimation using Simbiology – Pharmacokinetic Modeling: Simulation, Pop el of the Yeast Heterotrimeric G Protein Cycle and Glycoly.	-
	TOTAL: 45 PE	RIODS
OUTCO	DMES:	
Upon comp	oletion of the course, the students will be able to:	
	Develop models for Biological Data.	
	Implement image processing Techniques to Bioinformatics Data	
	Implement Micro Array analysis over Genome Expression.	
	Understand the study of simbiology.	
	Illustrate the pharmacokinetic modeling.	
	Elaborate the working model of biological data in Matlab.	
TEXT BOOH		
	ng Phoebe Chen(Ed),"Bioinformatics Technologies", Springer Publications, 2015	
	terovitz, M. F. Ramoni, "Systems Bioinformatics: An Engineering Case-Based	
11	ach", Artech House, 2017.	
REFER	ENCES:	
	ael R. King, Nipa A. Mody, "Numerical and Statistical Methods for Bioengineering	:
11	cations in MATLAB", Cambridge University Press, 2011.	
	. Semmlow, "Bio signal and Medical Image Processing", CRC Press, 2004.	
	C. Hoppensteadt, Charles S. Peskin, "Modeling and Simulation in Medicine and Li	fe
	ces", Springer, 2010.	
4. C. Gib	bas, Per Jambeck, "Developing bio- informatics computer skills", O'Reilly Media, 2	2001

22AM920	SMART AND INTERACTIVE HEALTHCARE	L	Т	Р	С
22AW1920	TECHNOLOGIES	3	0	0	3
OBJECTI	VES:				
The Cour	se will enable learners to:				
• Illu	strate the need and challenges of personalized healthcare.				
• Ex	plore the basic aspects of telehealth and telemedicine.				
• En	umerate mHealth evolution, regulation and applications.				
• De	monstrate the use of virtual reality and games in healthcare.				
• Ela	borate the importance of IoT in healthcare through its applications.				
UNIT I	PERSONALISED HEALTHCARE				9
Personalization	of healthcare: the relationship between data, Digital technologies and	adva	ncec	l an	alytics
– Digital health	measures - Examples in digital health technologies in clinical rese	arch ·	- Ex	am	ples in
digital health tec	hnologies in care delivery pathway -Challenges in bringing digital he	alth te	echr	olo	gies to

market –Challenges in adoption of digital health technologies.

UNIT II TELEHEALTH AND TELEMEDICINE	9
Telemedicine versus telehealth - Definitions - Technology vs services - Telemedicine technology	ogical
requirements – Telehealth technological requirements – Distant health examples – Smart medical sh	hirts –
Haptic platform - Overgrown cities - Rural health - Satellite telehealth - Telemedicine cr	ritical
technologies – Present challenges and benefits – Groundwork for a good telehealth application – Ena	abling
telehealth for existing medical application - Case study - Panic disorder - Case study - Diabetes teleh	health
framework - Case study - telehealth support for unit care - Medicolegal, ethical and regulatory guide	lelines
pertaining to telehealth.	

UNIT III M-HEALTH

Evolution from telemedicine to m-Health – Initial and recent applications – Mobile apps for mHealth -Overview of mHealth apps – Regulation of mHealth apps - Cloud computing definition and selected applications – closed loop solutions for personalized health interventions – Challenges in sensor design and fabrication – Challenges in mining and managing Big health data – Common mHealth and ICT applications – Evidence for mHealth impact –New frontiers in mHealth - Case study –Sleep problems and their implications.

UNIT IV VIRTUAL REALITY AND GAMES FOR HEALTHCARE

Augmenting mental healthcare – Mobilizing services with virtual reality – Pain – Anxiety and phobias – Stress management – Rehabilitation – Games for improving healthcare – Homo Ludens – Learning through challenges and fun – Physical and functional fidelity – Games for health – Rehabilitation – Crowdsourcing science – Gaming doctor – Games in official Medical programs – Games in skills training outing operating room – Financial and Ethical aspects.

UNIT V IOT FOR HEALTHCARE

Concept of IoT-Based Healthcare Technology – Ambient intelligence in Healthcare Technologies – Benefits – Challenges – Data handling and resource management – Security and Privacy – Interoperability – Stake holder collaboration and implementation – Technologies that enable IoT – Healthcare – Internet of Medical things – Applications of IoT in Healthcare – Benefits – Challenges.

TOTAL: 45 PERIODS

9

9

9

OUTCOMES:

Upon completion of the course, the students will be able to:

- **CO1:** Illustrate the need and challenges of personalized healthcare.
- **CO2:** Apply basic aspects of telehealth and telemedicine.
- **CO3**: Demonstrate M-Health evolution, regulation and applications.
- **CO4:** Elaborate the use of virtual reality and games in healthcare.
- **CO5:** Elaborate the importance of IoT in healthcare through its applications.
- CO6: Apply smart and interactive technologies for healthcare applications.

TEXT BOOKS:

- 1. Halit Eren and John G Webster, "Telemedicine and Electronic Medicine", CRC Press, Taylor and Francis Group, New York, 2nd edition, 2016.
- 2. Shabbir Syed-Abdul, Xinxin Zhu, Luis Fernandez-Luque, "Digital Health: Mobile and Wearable Devices for participatory Health Applications", Elsevier, Cambridge, 2021.
- 3. Shashi Gogia, "Fundamentals of Telemedicine and Telehealth", Elsevier, Cambridge, USA, 1st Edition, 2020.

- 1. Homero Rivas and Katarzyna Wac, "Digital Health: Scaling Healthcare to the World", Health Informatics, Springer, Switzerland, 2018.
- 2. Nishu Gupta and Sara Paiva, "IoT and ICT for Healthcare Applications", Springer Innovations in Communication and Computing, 2020.

HONOURS VERTICAL – COMPUTATIONAL INTELLIGENCE

				_	~
22AM921	SOFT COMPUTING	L 3	T 0	P 0	<u>C</u> 3
OBJECTI	VES:	-	Ţ	-	
	enable learners to:				
• To learn	the basic concepts of Soft Computing.				
	stand artificial neural networks.				
	rate fuzzy systems.				
	ate Genetic Algorithms.				
	ss the various Hybrid algorithms and various Swarm Intelligence alg	orith	me		
UNIT I	INTRODUCTION	onu	ms.		9
	s - Application Scope of Neural Networks - Fuzzy Logic - Genetic	Δ1σσ	rith	m _ 1	-
	omputing - Artificial Neural Network - Evolution of Neural Network				
	s – Bias – Threshold – Learning Rate – Momentum Factor – Vi				
	Neuron - Linear Separability - Hebb Network.	15110	nee	1 414	meter
UNIT II	ARTIFICIAL NEURAL NETWORKS				9
	orks - Adaptive Linear Neuron - Multiple Adaptive Linear Neurons	- Ra	ck-F	Prons	-
-	Basis Function Network - Pattern Association – Auto associative and			-	0
	ks - Bidirectional Associative Memory (BAM) - Hopfield Netwo				
-	s - Kohonen Self-Organizing Feature Maps.	I KS	1 1/1	Cu	vergine
UNIT III	FUZZY SYSTEMS				9
	lassical Sets (Crisp Sets) - Fuzzy Sets – Fuzzy Relation - Features	of tl	ne N	Iemł	-
	ification - Methods of Membership Value Assignments - Defuzzifica				
	(Alpha-Cuts) - Lambda-Cuts for Fuzzy Relations - Defuzzification				
-	zy Inference Systems.				
UNIT IV	GENETIC ALGORITHMS				9
Biological Backs	ground - Traditional Optimization and Search Techniques- Genetic Al	lgori	thm	and	Search
	GA - General Genetic Algorithm - Operators - Stopping Condi				
	g - The Schema Theorem- Classification - Holland Classifier				Benetic
	Advantages and Limitations- Applications.	•			
	HYBRID SOFT COMPUTING AND SWARM INTELLIGEN	CE			0
UNIT V	ALGORITHMS				9
Neuro-Fuzzy H	ybrid Systems - Genetic Neuro-Hybrid Systems - Genetic Fuzzy	Hył	orid	and	Fuzzy
Genetic Hybrid	Systems - Simplified Fuzzy ARTMAP – Swarm Intelligence Algor	ithm	s - A	Ant (Colony
Optimization – A	Artificial Bee Colony – Particle Swarm Optimization – Firefly Algor	ithm	•		
	TOT	TAL	: 45	PER	IODS
OUTCOM	IES:				
Upon complet	tion of the course, the students will be able to:				
	the basic concepts of Soft Computing.				
	Artificial neural networks and its applications.				
	zzy logic to solve different applications.				
	problems using Genetic algorithms.				
	various algorithms in Soft computing with its applications and lin	nitat	ions	•	
CO6: Use varie	bus algorithms in Soft computing to solve real-world problems.				

TEXT BOOKS:

- 1. S. N. Sivanandam, S. N. Deepa, "Principles of Soft Computing", Wiley India Pvt. Ltd., 2nd Edition, 2019.
- 2. Adam Slovik, "Swarm Intelligence Algorithms: Modification and Applications", Taylor & Francis, First Edition, 2020.

REFERENCES:

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-Hall of India, 2002.
- 2. Kwang H. Lee, First course on Fuzzy Theory and Applications^{II}, Springer, 2005.
- 3. N.P. Padhy, S. P. Simon, "Soft Computing with MATLAB Programming", Oxford University Press, 2015.
- 4. S. Rajasekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications ", PHI Learning Pvt. Ltd., 2017.

5. NPTEL Courses:

a. Introduction To Soft Computing - https://onlinecourses.nptel.ac.in/noc23_cs40/preview

		L	T P		С
22AM922	APPLIED AI and ML	3	0	0	3
OBJECTI	VES:	•	Ŭ	v	•
	e will enable learners to:				
• Und	erstand and apply statistical methods to analyze and interpret data.				
	lyze and cluster genomic data using appropriate algorithms.				
	lement linear regression models to predict outcomes.				
-	uate and improve model performance in binary classification tasks.				
	lement and train neural networks for various tasks.				
UNIT I	FOUNDATION OF DATA SCIENCE				9
	Data Science- NumPy & Pandas - Data Cleaning and Preparation				
•	pes of Data- Levels of Measurement-Descriptive Statistics-Probabil	ity 1	heo	ry -l	Inferential
	dvanced Visualization Techniques.				
•	: Cardio Good Fitness Data Analysis				
v	Food Hub Analysis				
	2. FIFO World Cup Analysis				
	3. Mobile Internet Usage Analysis				
UNIT II	MAKING SENSE OF UNSTRUCTURED DATA				9
	to Supervised & Unsupervised Learning- Handling Imbalance	.1 T	Jata	aata	V M.
Introduction	i to Supervised & Onsupervised Learning- mandning initiatate	a I	Jala	sets	-K-Means
	algorithm, Dimensionality Reduction techniques (PCA, t-SN				
Clustering	1 1 0 0	E)- '			
Clustering Dimensiona	algorithm, Dimensionality Reduction techniques (PCA, t-SN	E)- '			
Clustering Dimensiona Case Study	algorithm, Dimensionality Reduction techniques (PCA, t-SN l Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE	E)- '			
Clustering Dimensiona Case Study	algorithm, Dimensionality Reduction techniques (PCA, t-SN I Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE Genomic Data Clustering	E)- '			
Clustering Dimensiona Case Study Project: Fa UNIT III	algorithm, Dimensionality Reduction techniques (PCA, t-SN I Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE Genomic Data Clustering ntasy Sports Clustering Analysis REGRESSION AND PREDICTION	E)- ' E.	√isu	alizi	ing High
Clustering Dimensiona Case Study Project: Fa UNIT III Introduction	algorithm, Dimensionality Reduction techniques (PCA, t-SN I Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE : Genomic Data Clustering ntasy Sports Clustering Analysis	E)- V E.	Visu Gra	alizi	ng High 9 t Descent
Clustering Dimensiona Case Study Project: Fa UNIT III Introduction Algorithm-J	algorithm, Dimensionality Reduction techniques (PCA, t-SN) I Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE Genomic Data Clustering ntasy Sports Clustering Analysis REGRESSION AND PREDICTION In to Linear Regression-OLS Method-Cost function and Optimization	E)- V E.	Visu Gra	alizi	ng High 9 t Descent
Clustering Dimensiona Case Study Project: Fa UNIT III Introduction Algorithm-1 World Regn	algorithm, Dimensionality Reduction techniques (PCA, t-SN) I Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE Genomic Data Clustering ntasy Sports Clustering Analysis REGRESSION AND PREDICTION In to Linear Regression-OLS Method-Cost function and Optimization Multiple Linear Regression-Elastic Net, Model Evaluation Technic	E)- V E.	Visu Gra	alizi	ng High 9 t Descent
Clustering Dimensiona Case Study Project: Fa UNIT III Introduction Algorithm-1 World Regn	algorithm, Dimensionality Reduction techniques (PCA, t-SN) I Data-Comparsion of t-SNE with PCA-Combining PCA with t-SNE Genomic Data Clustering ntasy Sports Clustering Analysis REGRESSION AND PREDICTION In to Linear Regression-OLS Method-Cost function and Optimization Multiple Linear Regression-Elastic Net, Model Evaluation Technic ession Problems.	E)- V E.	Visu Gra	alizi	ng High 9 t Descent

UNIT IV	CLASSIFICATION AND HYPOTHESIS TESTING	9
Concepts of	f Classification algorithms- Model Performance- Application of Binary Class	sification-
	classification-Multi label classification-Challenges in solving real world class	
problems.		
-	es: 1.HR Employee Attrition Prediction	
Cuse Studi	2. KC Roasters Coffee Quality Prediction	
Projects:	1. Travel Package Purchase Prediction	
1 Tojects.	2. Potential Customers Prediction	
UNIT V	DEEP LEARNING	9
		-
-	tion of Neural Networks-Data Quality & Quantity-Data Augmentation- Hyper	-
0	putational Challenges -Transformer Networks-Transfer learning -solving re	eal world
	vork based Problems.	
Case Study	r: 1. Audio MNLST Digit Recognition,	
.	2.Street View Housing Number Digit Recognition	
Project:	Food Image Classification	
	TOTAL: 45 P	PERIODS
OUTCOM		
	of this course, the students will be able to:	
	y statistical techniques to interpret data and make data-driven decisions.	
CO2: Utiliz	ze dimensionality reduction techniques such as PCA and t-SNE to simplify	complex
datasets.		
CO3: Appl	ly regression techniques to real-world problems.	
CO4: Perfe	orm hypothesis testing to validate assumptions and make inferences from data.	
CO5: Appl	y deep learning techniques to solve practical problems.	
CO6: Imple	ement the concepts of AI and ML to solve various applications.	
TEXT BOO	OKS:	
1. Saik	at Dutt, Subramanian Chandramouli, Amit Kumar Das, Machine Learning, Pear	son,
2019	•	
2. Eth	em Alpaydin, Introduction to Machine Learning, Adaptive Computation and Ma	chine
	rning Series, Third Edition, MIT Press, 2014.	
	p Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly N	Iedia.
2017		
4. Dee	p Learning, Ian Goodfellow, Yoshua Bengio Aaron Courville, MIT Press, 2017.	
	aral Networks and Deep Learning, Michael Nielsen, Determination Press, 2015.	
REFEREN		
	dha Srinivasaraghavan, Vincy Joseph, Machine Learning, First Edition, Wiley, 2	2019
	Harrington, "Machine Learning in Action", Manning Publications, 2012.	-017.
	en Marsland, "Machine Learning – An Algorithmic Perspective", Second Edition,	Chanman
-	Iall/CRC Machine Learning and Pattern Recognition Series, 2014.	Chapman
	M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013.	
	•	w Modele
	toph Molnar, "Interpretable Machine Learning - A Guide for Making Black Bo	A INIQUEIS
1	inable", Creative Commons License, 2020.	Id Dagen1
-	Learning with TensorFlow: Explore neural networks with Python, Giancarlo Zaccone, N Admed Menshawy, Packt Publisher, 2017	nu. Kezaul
	n, Ahmed Menshawy, Packt Publisher, 2017.	
	Learning with Keras, Antonio Gulli, SujitPal, Packt Publishers, 2017.	

- Deep Learning with Keras, Antonio Gulli, SujitPal, Packt Publishers, 2017.
 Deep Learning with Python", Francois Chollet, Manning Publications, 2017
- 9. https://olympus.mygreatlearning.com/courses

22AM923	RECOMMENDER SYSTEMS	L 3	T 0	P 0	C 3
OBJECTIVE	S:	5	U	U	J
The Course w	ill enable learners to:				
• To und	erstand the foundations of the recommender system.				
• To lear	n about collaborative filtering.				
• To disc	cuss content-based recommendation systems.				
• To elab	porate on the evaluation paradigms for a recommendation system.				
• To mal	te students design and implement a recommender system.				
UNIT I	INTRODUCTION TO RECOMMENDER SYSTEMS				9
Introduction -	Basic Models of Recommender Systems - Domain-Specific Challeng	es in	Rec	comn	nender
	ld-Start Problem – Attack-Resistant Recommender Systems – Grou				
-	ng – Privacy - Application Domains.	Ľ		-	
UNIT II	COLLABORATIVE FILTERING				9
	-Based Collaborative Filtering - Key Properties - Predicting Rati	ngs	- (luste	
	y Reduction - A Regression Modeling - Graph Models – Model-				
	ecision and Regression Trees - Rule-Based Collaborative Filteri				
-	-	ng -	110	live	Dayes
	Filtering – Latent Factor Models.				-
	CONTENT-BASED RECOMMENDATION		T		<u>9</u>
	ents of Content-Based Systems - Preprocessing and Feature Extract				
	iltering - Content-Based Versus Collaborative Recommendations - U	sing	Cor	tent-	Based
Models for Co	llaborative Filtering.				
UNIT IV	DESIGN EVALUATION				9
Evaluating Par	adigms – General Goals of Evaluation Design-Design Issues in Offlin	e Re	com	mene	der
Evaluation-Ac	curacy Metrics in Offline Evaluation-Limitations of Evaluation Measure	ires.			
UNIT V	TYPES OF RECOMMENDATION SYSTEMS				9
Content-based	Recommender Systems – Basic Components – Constraint-based Rec	omn	lend	er Sy	ystems
	sitive Recommender Systems – Social and Trust-Centric Recommender			-	
					IODS
OUTCO					2020
	ion of the course, the students will be able to:				
	te the foundations of the recommender system.				
CO2: Use col	laborative filtering to design recommendation systems.				
CO3: Discuss	content-based recommendation systems.				
	te on the evaluation paradigms for a recommendation system.				
	propriate type of recommendation systems to solve real-world problem	IS.			
-	implement and evaluate a recommendation algorithm.				
TEXT BOOK					
	C. Aggarwal, Recommender Systems: The Textbook, Springer, 2016.				
	h D., Zanker M., FelFering A., Friedrich G., Recommender Systems: A idge University Press, First Edition, 2011.	An In	trod	uctio	on,

- 1. Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Mining of massive datasets, 3rd edition, Cambridge University Press, 2020.
- 2. Ricci, F., Rokach, L. and Shapira, B., Introduction to recommender systems handbook. In Recommender systems handbook, Springer, 2011.
- 3. Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer, First Edition, 2013.

22AM924	KNOWI EDGE ENGINEEDING	L	Т	Р	С
22AM924	KNOWLEDGE ENGINEERING	3	0	0	3
OBJECTIVES:					
• To unders	tand the basics of Knowledge Engineering.				
• To discus	s reasoning under uncertainty.				
	and develop ontologies.				
• To apply	reasoning with ontologies and rules.				
	tand learning and rule learning.				
UNIT I	INTRODUCTION				9
Knowledge, Rep	resentation and Reasoning - Need for Logic – First order logic – Sy	ntax	- S	ema	antics –
	icit and Explicit Belief - Expressing Knowledge - Resolution – I				
	rn clauses - Procedural Control of Reasoning.	r			
UNIT II	REASONING UNDER UNCERTAINTY				9
Introduction – A	bductive reasoning – Probabilistic reasoning: Enumerative Probab	oilitie	es –	Suł	biective
	Belief Functions – Baconian Probability – Fuzzy Probability – Un				5
	easoning – Intelligent Agent – Mixed-Initiative Reasoning – Knowl				
	easoning task: Intelligent Analysis.	0	•	5 -	0
UNIT III	ONTOLOGIES – DESIGN AND DEVELOPMENT				9
Concepts and I	nstances – Generalization Hierarchies – Object Features – De	efini	ng	Feat	tures –
	Transitivity – Inheritance – Concepts as Feature Values – Ontology				
	lopment Methodologies – Steps in Ontology Development – Domain				ing and
	on – Modelling-based Ontology Specification.				U
UNIT IV	REASONIING WITH ONTOLOGIES AND RULES				9
Production Syste	m Architecture – Complex Ontology-based Concepts – Reduction	and	Synt	thes	is rules
and the Inference	Engine – Evidence-based hypothesis analysis – Rule and Ontology M	Matc	hing	s - P	artially
	dge – Reasoning with Partially Learned Knowledge - Rules in Pr				
Object-Oriented	Representation - Structured Descriptions.			-	
UNIT V	LEARNING AND RULE LEARNING				9
Machine Learnin	g - Concepts - Generalization and Specialization Rules - Types -	– Inc	lucti	ve o	concept
learning from Ex	amples – Learning with an Incomplete Representation Language – I	Form	al d	efin	ition of
Generalization.					
Modelling, Learn	ing and Problem Solving - Rule learning and Refinement - Overvie	ew.			
	TOTA	\L:	45	PE]	RIODS
OUTCOMES:					
At the end of thi	s course, the students will be able to:				
	the basics of Knowledge Representation and Knowledge Engineering	ıg.			
1	easoning under uncertainty.				
-	d develop ontologies.				
-	t ontology-based reasoning systems.				
CO5: Understan	d learning and rule learning.				

CO6: Integrating knowledge representation and reasoning in intelligent systems.

TEXT BOOKS:

- 1. Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, Morgan Kaufmann, 2004.
- 2. Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David A. Schum, Knowledge Engineering Building Cognitive Assistants for Evidence-based Reasoning, Cambridge University Press, First Edition, 2016.

- 1. Ela Kumar, Knowledge Engineering, I K International Publisher House, 2018.
- 2. John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole, Thomson Learning, 2000.
- 3. King, Knowledge Management and Organizational Learning, Springer, 2009.
- 4. Jay Liebowitz, Knowledge Management Learning from Knowledge Engineering, 1st Edition,2001.

22434025		L	Τ	P	С
22AM925	COMPUTATIONAL NEUROSCIENCE	3	0	0	3
OBJECTIVES	:				
• To unde	rstand what nervous systems do and determine how they function.				
• To expl	ore the computational principles governing various aspects of visio	on, s	enso	ory-i	noto
control,	learning, and memory.				
• To analy	yze neural models.				
• To learn	to extract information through neural encoding and decoding.				
• To invest	stigate models of synaptic plasticity and learning in the brain.				
UNIT I	NEURAL ENCODING				9
Firing Rates an	d Spike Statistics: Introduction- Spike Trains and Firing Rates - Wha	t Ma	kes	a N	euroi
Fire? Spike-Tra	in Statistics – The Neural Code				
Reverse Correl	ation and Visual Receptive Fields – Estimating Firing Rates Introdu	ctior	1 to	the	Early
Visual System	Reverse-Correlation Methods: Simple Cells Static Non linearities:	Cor	nple	ex C	ells
Receptive Field	s in the Retina and LGN Constructing Visual Receptive Fields				
UNIT II	NEURAL DECODING AND INFORMATION THEORY				9
Discrimination	- Population Decoding - Spike-Train Decoding				
	eory: Entropy and Mutual Information - Information and Entropy	Ma	axim	nizat	ion -
	formation for Spike Trains				
UNIT III	MODEL NEURONS				9
Phase Plane Ar	alysis – I - Phase Plane Analysis – II - Analyzing HHE – Bifurcation	ons -	0	ther	Poin
Models – Leve	els of Neuron Modeling-Conductance-Based Models - The Cable	Equ	atio	n- 1	Aulti
compartment m					
UNIT IV	NETWORK MODELS				9
U	dels – Feedforward Networks – Recurrent Networks – Excitatory-Inhi	bitor	y N	etwo	orks -
Stochastic Netv					
UNIT V	PLASTICITY				9
• •	nission and Synaptic Strength - Ways of Modification of Synaptic St	-	gth -	Туј	pes o
Plasticity - Sho	rt Term Plasticity - Long Term Plasticity – Computational Implication	IS			

OUTCOMES:

At the end of this course, the students will be able to:

CO1: Elaborate the fundamentals of neural encoding.

CO2: Apply neural encoding techniques.

CO3: Use Information Theory to decode neural signals.

CO4: Analyze and model the dynamics of neurons.

CO5: Design and analyze neural networks.

CO6: Implement the concepts of synaptic plasticity.

TEXT BOOKS:

- 1. Dayan, Peter, and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2005. ISBN: 9780262041997.
- 2. Paul Miller, An Introductory Course in Computational Neuroscience, MIT Press, 2018.

- 1. Signal and Systems, Alan V. Oppenheim, Alan S. Willsky, Syed Hamid Nawab Prentice Hall, 1997.
- 2. Methods in Neuronal Modeling, Second Edition From Ions to Networks, Edited by Christof Koch and Idan Segev, MIT Press
- 3. Ionic Channels of Excitable Membranes, Second Edition, Bertil Hille, Sinauer Associates Inc.,1992
- 4. NPTEL: Computational Neuroscience Course (nptel.ac.in)

22AM926	AI ESSENTIALS	L	Т	Р	С
		3	0	0	3
OBJECTIVES:					
The Cours	e will enable learners:				
To familia	arize the concepts and recent technologies in AI.				
• To use ge	nerative AI in building applications.				
• To learn t	o design inputs for AI tools by using prompt engineering.				
• To use to	ols and frameworks in explainable AI.				
• To build A	AI systems with the principles of responsible AI.				
To unders	stand the basics of Quantum AI.				
UNIT I	GENERATIVE AI				9
Introduction - Ty	pes of Generative AI models – GANs – VAE – Diffusion Models	s – 1	DAI	L-F	E 2 model
- Stability AI and	1 Midjourney – Speech – Large Language Models – Language an	d In	telli	gen	ce – NLP
- Word2Vec Me	odel – Transformers – Dials – BERT – GPT Systems and C	hatC	GPT	- A	uto Code
Generation – Wo	rking – Copilot.				
UNIT II	PROMPT ENGINEERING				9
Basics – In-Con	text Learning – In-Context Prompting – Techniques – Image	Pror	npti	ng -	– Prompt
Hijacking – Chal	lenges.		-	-	_
UNIT III	EXPLAINABLE AI				9
Introduction – Pr	oposed AI Model – Proposed Architecture – XAI Methods and t	theii	cla	ssifi	cations –
	ation – Frameworks for Model Interpretability and Explanation –				
for Explaining A	I Models – Evaluation measures and applications for Explainable	AI.			
UNIT IV	RESPONSIVE AI				9
Ethical Decision	Making – Approaches to Ethical Reasoning by AI – Designing Ar	tific	ial l	Mor	al Agents
- Ethical Deliber	ations - Levels of Ethical Behaviour - Ethical Status of AI Syste	ms -	- Go	over	nance for

Responsible AI – Codes of Conduct – Inclusion and Diversity – AI and Society	– Super-intelligence –
Responsible AI.	Super interingence
UNIT V QUANTUM ML	9
Quantum ML – Grover search algorithm – Quantum RL – Quantum anneali	ng – Ouantum Neural
Networks – Topographic representation – Quantum ML – Brain – Topog	0
Topographic qubit maps – conversions between representations – applications.	
	OTAL:45 PERIODS
OUTCOMES:	
At the end of this course, the students will be able to:	
CO1: Elaborate the concepts and recent technologies in AI.	
CO2: Apply generative AI in building applications.	
CO3: Design inputs for AI tools by using prompt engineering.	
CO4: Use tools and frameworks in explainable AI.	
CO5: Build AI systems with the principles of responsible AI.	
CO6: Understand the basics of Quantum AI.	
TEXT BOOKS:	
1. Tom Taulli, "Generative AI - How Chatgpt and other AI Tools will Re	volutionize Business",
Apress, 2023.	
2. Mayuri Mehta, Vasile Palade, Indranath Chatterjee, Explainable AI: Found	lations, Methodologies
and Applications, Springer, 2023.	
3. Virginia Dignum, Responsible Artificial Intelligence, How to Devel	op and Use AI in a
Responsible Way, Springer, 2019.	
4. Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Sourav De, Elizah	
Chakraborti, "Quantum Machine Learning", De Gruyter Frontiers in Com	putational Intelligence,
2020.	
REFERENCES:	
1. Ben Auffarth, Generative AI with Lang Chain, Packt Publishing, 2023.	• • • •
2. Amit Bahree, Generative AI in Action, Manning Publication, First Edition	
 Gabriele Gianini, Pierre-Edouard Portier, "Advances in Explainable Artif MDPI, 2024. 	icial Intelligence",
4 Santany Bettanovak Quantum Machina Laaming with Bythan Using Ci	na from Coogla

 Santanu Pattanayak, Quantum Machine Learning with Python - Using Cirq from Google Research and IBM Qiskit, Apress, 2021.

R2022

MINOR DEGREE

OFFERED BY

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

AND MACHINE LEARNING

(for other B.E. / B.Tech. Programmes)

For the Students admitted during 2022-2023 & 2023-2024

R2022

MINOR DEGREE CURRICULUM OFFERED BY DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (for other B.E. / B.Tech. Programmes)

MINOR DEGREE IN ARTIFICIAL INTELLIGENCE

CURRICULUM

SI. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	С
1.	22AM004	Introduction to Data Science	3	3	0	0	3
2.	22AM005	Introduction to Artificial Intelligence	3	3	0	0	3
3.	22AM006	Machine Learning Algorithms	3	3	0	0	3
4.	22AM007	Foundations of Deep Learning	3	3	0	0	3
5.	22AM812	Capstone Project	12	0	0	12	6

SYLLABUS

22AM004	INTRODUCTION TO DATA SCIENCE	L T 3 0	P 0	C 3
OBJECTIVES:		0	U	5
	te the fundamentals of data science process.			
	strate various python libraries for data science			
	the various classification algorithms.			
	the clustering and outlier detection approaches.			
• To present	data using visualization tools in Python.			
UNIT I	INTRODUCTION			9
goals – Retrieving findings and build Data	efits and uses – facets of data - Data Science Process: Overview – Deg data – data preparation - Exploratory Data analysis – build the mode ing applications - Data Mining - Data Warehousing – Basic statistical	el – pr	esen	ting s of
UNIT II	PYTHON LIBRARIES FOR DATA SCIENCE			9
Launching the IPy	thon Shell - Launching the Jupyter Notebook - IPython Magic Comman	ds - Th	e Ba	sics
of NumPy Arrays	-Universal Functions – Aggregations – Computation on Arrays – Far	icy Ind	lexin	<u>g</u> –
Sorting arrays - S	Structured data – Data manipulation with Pandas – Data Indexing a	nd Sel	ectio	n –
Handling missing	data - Hierarchical indexing - Combining datasets - Aggregation and	nd Gro	oupin	g –
String operations -	- Working with time series – High performance Pandas.			
UNIT III	CLASSIFICATION			9
Basic Concepts – I	Decision Tree Induction – Bayes Classification Methods – Rule-Based (Classifi	icatio)n –
Model Evaluation				
Bayesian Belief No	etworks – Classification by Backpropagation – Support Vector Machine	s – Ass	socia	tive
	-Nearest-Neighbor Classifiers – Fuzzy Set Approaches - Multiclass (
Semi-Supervised (
UNIT IV	CLUSTERING AND OUTLIER DETECTION			9
Cluster Analysis -	Partitioning Methods – Evaluation of Clusters – Probabilistic Model-Ba	used Cl	uster	ring
•	tlier Analysis – Outlier Detection Methods – Statistical Approaches –			0
Classification-Bas			υ	
UNIT V	DATA VISUALIZATION			9
	lib – Simple line plots – Simple scatter plots – visualizing errors – dens	ity and	cont	our
	= legends – colors – subplots – text and annotation – customization – thr	•		
	hic Data with Basemap - Visualization with Seaborn.	ee ann	CHISIC	, iiui
protaing Geograp	TOTAL:	45 PF		DS
OUTCOMES:				
	course, the students will be able to:			
	et the fundamentals of data science process.			
-	by the rundamentals of data science applications.			
11 • 1	and interpret basic classification algorithms.			
	clustering and outlier detection approaches.			
	and interpret data using visualization tools in Python.			
	ent basic data science techniques using Python.			
TEXT BOOKS:	ent busie data science techniques using 1 yulon.			
	en, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Scients 2016	nce", N	Mann	ing
i deficutioi				

- 2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining: Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012.
- 3. Jake Vander Plas, "Python Data Science Handbook: Essential Tools for Working with Data", Kindle Edition, 2017.

REFERENCES:

- 1. Roger D. Peng, R Programming for Data Science, Lulu.com, 2016.
- 2. Laura Igual, Santi Seguí, "Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications", 1st Edition, Springer, 2017.
- 3. Peter Bruce, Andrew Bruce, "Practical Statistics for Data Scientists: 50 Essential Concepts", 3rd Edition, O'Reilly, 2017.
- 4. Avrim Blum, John Hopcroft, Ravi Kannan, "Foundations of Data Science", 1st Edition, Cambridge University Press, 2020.

NPTEL:

- 5. Data Science for Engineers <u>https://onlinecourses.nptel.ac.in/noc24_cs53/preview</u>
- 6. Foundation of Data Science <u>https://onlinecourses.swayam2.ac.in/imb24_mg31/preview</u>
- 7. Python for Data Science <u>https://onlinecourses.nptel.ac.in/noc24_cs54/preview</u>

22AM005	INTRODUCTION TO ARTIFICIAL INTELLIGENCE	L	Τ	P	С
ZZANIUUS	INTRODUCTION TO ARTIFICIAL INTELLIGENCE	3	0	0	3
OBJECTIVES:					
• To discuss t	he foundations of AI and various intelligent agents				
 To discuss p 	problem solving search strategies and game playing				
To describe	logical agents and first-order logic				
To illustrate	problem-solving strategies with knowledge representation mechani	sm fe	or so	olvir	ıg
hard probler					U
To summari	ze the basics of learning and expert systems.				
UNIT I	ARTIFICIAL INTELLIGENCE AND INTELLIGENT AGEN	ITS			9
Introduction to AI-	Foundations of Artificial Intelligence - Intelligent Agents – Agents a	ind E	nvii	ronn	nents
- Concept of ration	nality – Nature of environments – Structure of agents - Problem	solv	ing	agei	nts –
Example Problems	- Search Algorithms – Uninformed Search Strategies		-	-	
UNIT II	PROBLEM SOLVING				9
Heuristic search st	rategies – heuristic functions- Game Playing – Mini-max Algo	orithr	n -	Opt	imal
decisions in game	s - Alpha-beta search -Monte-Carlo search for Games - Const	raint	sat	isfa	ction
problems – Constra	int propagation – Backtracking search for CSP – Local search for C	SP –	Str	uctu	re of
CSP					
UNIT III	LOGICAL AGENTS				9
Knowledge-based a	gents - Logic - Propositional logic - Propositional theorem provin	<u>g – I</u>	Prop	ositi	ional
model checking – A	Agents based on propositional logic				
First-Order Logic -	- Syntax and semantics – Using First-Order Logic - Knowledge re	epres	enta	tion	and
	ences in first-order logic – Propositional Vs First-Order Inference	- Un	ifica	ation	and
First-Order Inference	ce - Forward chaining – Backward chaining - Resolution				
UNIT IV	KNOWLEDGE REPRESENTATION AND PLANNING				9
	ering – Categories and objects – Events – Mental objects and modal l	ogic	– R	easo	ning
•	ies – Reasoning with default information				
	- Algorithms for classical planning – Heuristics for planning – Hier	archi	ical	plan	ning
	c domains – Time, schedule, and resources - Analysis				
UNIT V	LEARNING AND EXPERT SYSTEMS				9

Forms of Learning – Developing Machine Learning systems – Statistical Learning - Deep Learning: Simple feed-forward network - Neural Networks – Reinforcement Learning: Learning from rewards – Passive and active Reinforcement learning.

Expert Systems: Functions – Main structure – if-then rules for representing knowledge – developing the shell – Dealing with uncertainty.

TOTAL: 45 PERIODS

OUTCOMES: At the end of this course, the students will be able to:

CO1: Summarize the foundations of AI and various Intelligent agents.

CO2: Apply search strategies in problem solving and game playing.

- CO3: Outline logical agents and first-order logic.
- **CO4**: Apply problem-solving strategies with knowledge representation mechanism for solving hard problems.
- CO5: Use the different forms of learning and expert systems.
- CO6: Elaborate on the various concepts and algorithms of artificial intelligence.

TEXT BOOKS:

- 1. Peter Norvig and Stuart Russel, Artificial Intelligence: A Modern Approach, Pearson, 4th Edition, 2020.
- 2. Bratko, Prolog: Programming for Artificial Intelligence^{II}, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.

REFERENCES:

- 1. Elaine Rich, Kevin Knight and B.Nair, Artificial Intelligence 3rd Edition, McGraw Hill, 2017.
- 2. Melanie Mitchell, Artificial Intelligence: A Guide for Thinking Humans. Series: Pelican Books, 2020
- 3. Ernest Friedman-Hill, Jess in Action, Rule-Based Systems in Java, Manning Publications, 2003
- 4. Nils J. Nilsson, The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 5. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems,1st Edition by Patterson, Pearson, India, 2015

NPTEL:

- 6. Introduction to Artificial Intelligence https://onlinecourses.nptel.ac.in/noc24_cs08/
- 7. Fundamentals of Artificial intelligence https://onlinecourses.nptel.ac.in/noc24_ge47/
- 8. Artificial Intelligence : Search Methods For Problem solving https://onlinecourses.nptel.ac.in/noc24_cs88/

22AM006	MACHINE LEADNING ALCODITING	L	Т	Р	С
22A1V1000	MACHINE LEARNING ALGORITHMS	3	0	0	3
OBJECTIVES:					
 To discuss 	the basics of Machine Learning and Supervised Algorithms.				
 To underst 	and the various classification algorithms.				
• To study d	imensionality reduction techniques.				
• To elabora	te on unsupervised learning techniques.				
 To discuss 	various Graphical models and understand the basics of reinforcement	nt le	arni	ng.	
UNIT I	INTRODUCTION				9
Machine Learning	- Types - Applications - Preparing to Model - Activities - Data - Ex	xplo	ring	stru	ıcture
of Data – Data Qu	ality and Remediation – Data Pre-processing – Modelling and Evalu	atio	n: Š	elec	ting a
Model -Training a	a Model – Model representation and Interpretability – Evaluating I	Perf	orm	ance	e of a

Model – Improving Performance.

UNIT II	FEATURE ENGINEERING AND DIMENSIONALITY REDUCTION9
Feature Engineer	ng – Feature Transformation – Feature Subset Selection - Principle Component
Analysis – Featu	re Embedding - Factor Analysis - Singular value decomposition and Matrix
Factorization – N	Iultidimensional scaling – Linear Discriminant Analysis – Canonical Correlation
Analysis – Isomap	– Locally linear Embedding – Laplacian Eigenmaps.
UNIT III	SUPERVISED LEARNING 9
Linear Regression	- Relation between two variables – Steps – Evaluation – Logistic Regression –
Decision Tree – A	lgorithms – Construction – Classification using Decision Tree – Issues – Rule-based
Classification – Pr	runing the Rule Set – Support Vector Machines – Linear SVM – Optimal Hyperplane
– Radial Basis Fu	nctions – Naïve Bayes Classifier – Bayesian Belief Networks.
UNIT IV	UNSUPERVISED LEARNING 9
Clustering – Typ	es – Applications - Partitioning Methods – K-means Algorithm – K-Medoids –
Hierarchical meth	ods – Density based methods DBSCAN – Finding patterns using Association Rules –
Hidden Markov M	lodel.
UNIT V	NEURAL NETWORKS AND TYPES OF LEARNING 9
Biological Neuron	n – Artificial Neuron – Types of Activation function – Implementations of ANN –
Architectures of N	Neural Networks – Learning Process in ANN – Back propagation – Deep Learning –
Representation Le	arning – Active Learning – Instance based Learning – Association Rule Learning –
Ensemble Learnin	g Algorithm – Regularization Algorithm- Reinforcement Learning – Elements- Model-
based- Temporal I	Difference Learning.
	TOTAL: 45 PERIODS
OUTCOMES:	
At the end of this	course, the students will be able to:
	e the basics of Machine Learning and Supervised Algorithms.
	arious classification algorithms.
	asignality reduction techniques

CO3: Study dimensionality reduction techniques.

CO4: Elaborate on unsupervised learning techniques.

CO5: Outline various Graphical models and understand the basics of reinforcement learning.

CO6: Solve real-world problems using machine learning algorithms.

TEXT BOOKS:

- 1. Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, "Machine Learning", Pearson, 2019.
- 2. Ethem Alpaydin, "Introduction to Machine Learning, Adaptive Computation and Machine Learning Series", Third Edition, MIT Press, 2014.

REFERENCES:

- 1. Anuradha Srinivasaraghavan, Vincy Joseph, "Machine Learning", First Edition, Wiley, 2019.
- 2. Peter Harrington, "Machine Learning in Action", Manning Publications, 2012.
- 3. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 4. Tom M Mitchell, "Machine Learning", First Edition, McGraw Hill Education, 2013.
- 5. Christoph Molnar, "Interpretable Machine Learning A Guide for Making Black Box Models Explainable", Creative Commons License, 2020.

NPTEL:

6. Introduction to Machine Learning - <u>https://onlinecourses.nptel.ac.in/noc24_cs101/</u>

22AM007	FOUNDATIONS OF DEEP LEARNING	L 3	<u>Т</u> 0	P 0	C 3
OBJECTIVES:		3	U	U	3
	line the basics of deep neural networks.				
	cuss advanced deep learning models.				
	cuss CNN and RNN architectures of deep neural networks.				
	borate autoencoders in neural networks.				
	cuss the deep generative models.				
UNIT I	DEEP NETWORKS				9
Challenges motiv	ating deep learning - Deep feedforward networks - Learning XOR -	G	radie	ent b	ase
	Units – Architecture Design – Back Propagation – Regularization –				
	rained Optimization – Under-Constrained Problems – Dataset Augm				
	ii-Supervised Learning – Multi-Task Learning – Early Stopping – Para				
	g and Other Ensemble methods – Dropout – Adversarial Training.			J2	,
UNIT II	OPTIMIZATION FOR TRAINING DEEP MODELS				9
Pure optimization	– Challenges – Basic Algorithms – Parameter initialization Strategi	es	– A]	gori	thm
*	arning Rates – Approximate Second-Order methods – Optimization Str			0	
Algorithms.	o in in the second seco		5		
UNIT III	CONVOLUTIONAL AND RECURRENT NEURAL NETWOR	KS			9
Convolution Oper	ation – motivation – Pooling – Infinitely Strong prior – Variants – Stru	ucti	ıred	Out	out
	cient Convolutional Algorithms – Random or Unsupervised features –				
• 1	arning – Sequence Modelling - Computational Graphs - RNN - Bidin				
-	- Sequence to Sequence RNN - Deep Recurrent Networks - Recursive I				
	pendencies; Leaky Units – Strategies for multiple time scales – LSTM a				
				••••	
	r Long Term Dependencies.				
<u>.</u>	r Long Term Dependencies. AUTOENCODERS				9
UNÎT IV	AUTOENCODERS	r Si	ze a	nd D	9 ept
UNIT IV Autoencoders: Un	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer				ept
UNIT IV Autoencoders: Un - Stochastic encod	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod				ept
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer ers and decoders – Denoising Autoencoders - Learning with autoencod applications of autoencoders.				ept ctiv
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer ers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS	lers	- cc	ontra	ept ctiv
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I	lers Dee	-co	ontra oltzn	ept ctiv 9 nan
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma	lers Dee ann	– co p B Ma	ontrae oltzn achin	ept ctiv 9 nan
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Network	lers Dee ann	– co p B Ma	ontrae oltzn achin	ept ctiv 9 nan
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod applications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Networks s.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Network	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Boltz Boltzmann Mach Generative Model	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Networks. S. TOTAL	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod applications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Networks. TOTAL s course, the students will be able to:	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencoder pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Networks. TOTAL s course, the students will be able to: basics of deep neural networks.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Boltz Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Networks. S course, the students will be able to: basics of deep neural networks. vanced deep learning models.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Networks. S course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au	AUTOENCODERS Indercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencoder pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL S course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au CO5: Apply deep	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer ers and decoders – Denoising Autoencoders - Learning with autoencoder pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL s course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks. generative models to solve real world problems.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au CO5: Apply deep CO6: Build deep	AUTOENCODERS Indercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencoder pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL S course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au CO5: Apply deep CO6: Build deep TEXT BOOKS:	AUTOENCODERS indercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL s course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks. generative models to solve real world problems. learning models and evaluate them.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	Pept ctiv 9 nan les atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au CO5: Apply deep CO6: Build deep TEXT BOOKS: 1. Ian Goodfellow	AUTOENCODERS adercomplete autoencoders - Regularized autoencoders – Power, Layer ers and decoders – Denoising Autoencoders - Learning with autoencoder pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL s course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks. generative models to solve real world problems.	Dee ann ets	– co p B Ma – E	ontrae oltzn achin valua	ept ctiv 9 nan es atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au CO5: Apply deep CO6: Build deep TEXT BOOKS: 1. Ian Goodfellow REFERENCES:	AUTOENCODERS indercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL s course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks. generative models to solve real world problems. learning models and evaluate them. v, Yoshua Bengio, Aaron Courville, ``Deep Learning'', MIT Press, 20	Dee ann ets : 4	– cc p B Ma – E 5 Pl	oltzn achin valua	oept ctiv 9 nan es atin 0D
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au CO5: Apply deep CO6: Build deep TEXT BOOKS: 1. Ian Goodfellow REFERENCES: 1. Charu C. A	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL s course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks. generative models to solve real world problems. learning models and evaluate them. y, Yoshua Bengio, Aaron Courville, ``Deep Learning', MIT Press, 20 Aggarwal, ``Neural Networks and Deep Learning: A Textbook'', Spring	Dee ann ets : 4	– cc p B Ma – E 5 Pl	oltzn achin valua	oppt ctiv 9 nan les atin
UNIT IV Autoencoders: Un - Stochastic encod Autoencoders – A UNIT V Boltzmann Mach Machines - Bolt Boltzmann Mach Generative Model OUTCOMES: At the end of this CO1: Outline the CO2: Develop ad CO3: Implement CO4: Interpret au CO5: Apply deep CO6: Build deep TEXT BOOKS: 1. Ian Goodfellow REFERENCES: 1. Charu C. A Publishing	AUTOENCODERS dercomplete autoencoders - Regularized autoencoders – Power, Layer lers and decoders – Denoising Autoencoders - Learning with autoencod pplications of autoencoders. DEEP GENERATIVE MODELS ine – Restricted Boltzmann Machine – Deep Belief Networks – I zmann Machines for Real-Valued Data – Convolutional Boltzma ine for Structured or Sequential Outputs – Directed Generative Net s. TOTAL s course, the students will be able to: basics of deep neural networks. vanced deep learning models. CNN and RNN architectures of deep neural networks. toencoders in neural networks. generative models to solve real world problems. learning models and evaluate them. y, Yoshua Bengio, Aaron Courville, ``Deep Learning', MIT Press, 20 Aggarwal, ``Neural Networks and Deep Learning: A Textbook'', Spring	Dee ann ets : 4	– cc p B Ma – E I5 P]	ontrae oltzn achin valua ERI(ona ona ona

Lectures on Human Language Technologies, Morgan & Claypool publishers, 2017.

- 3. Francois Chollet, ``Deep Learning with Python", Manning Publications Co, 2018.
- 4. Josh Patterson, Adam Gibson, ``Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017.
- 5. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.

NPTEL:

- 6. Deep Learning <u>https://onlinecourses.nptel.ac.in/noc24_ee04/preview</u>
- 7. Deep Learning IIT Ropar https://onlinecourses.nptel.ac.in/noc24_cs59/preview